

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

: +62 274 552243 Telp

: maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id sekprodi-s2-matematika.mipa@ugm.ac.id Email

Website : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Cryptography		
Module level, if applicable	Master		
Code, if applicable	MMM 6208		
Subtitle, if applicable	Cryptography		
Courses, if applicable	Cryptography		
Semester(s) in which the module is taught	2 nd or 4 th		
Person responsible for the module	Chair of Algebra Research Group		
Lecturer(s)	Indah Emilia Wijayanti, Diah Yunia Eksi Palupi		
Language	Bahasa Indonesia		
Relation to curriculum	Elective course.		
	Related to : Algebraic Structure		
Teaching methods	Lecture, project based.		
Workload (incl. contact hours,	Total workload:		
self-study hours)	3 hours lectures, 3 hours supervised activities, 3 hours individual learning per week, 14 weeks per semester, total 9 hours x 14 weeks = 126 hours per semester.		
	Contact hours:		
	3 hours lectures per week.		
	Private study including examination preparation, specified in hours:		
	3 hours individual per week.		
Credit points	3		

Required and recommended prerequisites for joining the module	Algebraic Structure		
Module objectives/intended learning outcomes	After the course the student should be able to : CO1. demonstrate knowledge and understanding of basic notions in cryptography,		
	CO2. identify some mathematical problems and the associated mathematical theory that underlies the asymmetric cryptographic applications treated in the course, and to solve problems using this theory,		
	CO3. demonstrate knowledge and understanding the algorithms that are treated in the course, and account for and prove their complexity,		
	CO4. implement the simpler of these algorithms using mathematical software, and to analyze their complexity in practice.		
Content	The course treats basic notions in cryptography and the mathematical problems, with associated mathematical theory, that are the basis for asymmetric cryptographical applications such as RSA (both as cryptosystem and digital signature), DH, El Gamal, ECDH, ECDSA and Miller-Rabin. Different algorithms (to solve these mathematical problems) are studied with a focus on their complexity. Algorithms that are treated include fast powering, Shank's baby-step giant-step, Pohlig-Hellman, Pollard's p-1, QS, index calculus, Pollard's rho och Lenstra's ECM.		
Examination forms	Oral presentation, essay.		

Study and examination requirements	The final mark will be computed from a proportional weight of assignments, mid examination and final examination.The final mark will be weighted as follows:NoAssessment methods(components, activities)1Final Examination2Mid-Term Examination3Project50 - 55 %	
	Minimum final mark to pass : 60 (C).	
Media employed	Whiteboard, computer, LCD, online platform	m.
Reading list	 Whiteboard, computer, LCD, online platform. E Douglas R. Stinson, 2002, CryptographyTheory and Practice, 2ndEd, A CRC Press Company, Boca Raton, London, New York, Washington DC. Johannes A. Buchmann, 2001, Introduction to Cryptografi, Springer-Verlag, New York, Berlin, Heidelberg. Wayne Patterson, 1987, Mathematical Cryptology for computer scientics and Mathematicians, Rowman & Littlefield, United States of America. Katz J., Lindell Y., 2015, Introduction to Modern Cryptography, 2nd Edition, CRC Press Taylor and Francis Group, U.S. Hoffstein, J., Pipher, J., Silverman, H.J., 2014, An Introduction to Mathematical Cryptography (Undergraduate Text in Mathematics), Springer Science-Bussines Media, New York William Stallings, Cryptography and Network Security Principle and Practice, Pearson Education Inc., 6th Edition, 2014. Bruce Schneier, Applied Cryptography Protocols, Algorithms, and Source Code in C, Wiley Publication, 2nd Edition, 1996. 	

CO-PLO MAPPING

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO 1	V		V	V	V	V
CO 2	V		V	V	V	V
CO 3	V		V	V	V	V
CO 4	V		V	V	V	V

Compilation Date	:	29 Juli 2022
Modified Date	:	29 Juli 2022

Learning Outcomes

Knowledge and Understanding

Having successfully completed this module, you will be able to demonstrate knowledge and understanding of:

- The historic struggle between code-makers and code-breakers
- The broad categories of codes and ciphers, and appropriate uses for each

Subject Specific Practical Skills

Having successfully completed this module you will be able to:

- Select appropriate ciphers, cipher modes, and protocols for simple applications
- Attack classical ciphers such as Vigenère, and LFSR-based stream ciphers

Subject Specific Intellectual and Research Skills

Having successfully completed this module you will be able to:

• Perform simple mathematics appropriate to public-key encryption, and to cryptosystems based on polynomials over the binary numbers

Transferable and Generic Skills

Having successfully completed this module you will be able to:

• Use graduate-level literature to investigate areas of mathematics previously unfamiliar to you