

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Boundary Value Problem (Masalah Syarat Batas)			
Module level, if applicable	Master Program			
Code, if applicable	MMM 5307			
Subtitle, if applicable				
Courses, if applicable	Boundary Value Problem (Masalah Syarat Batas)			
Semester(s) in which the module is taught	1 st semester			
Person responsible for the module	Chair of Applied Mathematics Research Group			
Lecturer(s)	Prof. Dr. Bambang Sudjijono			
Language	Bahasa Indonesia			
Relation to curriculum	Master Degree in Mathematics, Elective, 1st semester			
Teaching methods	lecture, project, seminar			
Workload (incl. contact hours, self-study hours)	 3x50 minutes lectures, 3x50 minutes structured activities, 3x50 minutes individual study, In 16 weeks per semester (including mid-term and final examinations). Total: 144x50 minutes per semester 			
Credit points	3			
Required and recommended prerequisites for joining the module	-			

Module objectives/intended learning outcomes	After completing this course the students should have: CO 1 model the vibrating the string and the circular membrane and solve the models CO 2 Solve initial value problems by the Integral Transform CO 3 Solve initial boundary value problem by Fourier-Legendre series CO 4 Solve initial boundary value problem by Green function CO 5 Understand conservation law						
Content	Review of second order linear partial differential equation : classification and reduction in canonical form of the second order linear partial differential equation. The solution of Cauchy problem for Hyperbolic equation in canonical form. Exponential Fourier series, Fourier integral, Legendre- Fourier series and their applications. Wave equation: vibrations on a thin rectangular membrane, vibrations of a Circular Membrane. Heat equation: Uniqueness solution, Gauss Kernel method, Temperature in steady condition in rectangular. in circular plate, in spherical, Laplace equation: harmonic function. Green function in Laplace equation, Helmholtz Operator, wave equation, heat equation. conduction of heat in a rod. Nonlinear conservation law: discontinue solution, Traffic model, Cole-Hoft transformation.						
Examination forms	essay						
Study and examination requirements	To pass this course, students must obtain a minimum grade of D. The final mark will be weighted as follows:						
	No	Assessment method	Weight	Cognitive	Project/Case base		
	1.	Final Examination	40	15	25		
	2.	Mid-Term Examination	30	15	15		
	3.	Quiz, Homework	30	15	15		
		ΤΟΤΑΙ	100	45	55		
Media employed	Board, LCD Projector, Laptop/Computer						

Reading list	1. R V Churchill, 2012, Fourier Series and Boundary Value Problems, MV Graw Hill Book Compnay, New York
	2. J. Ray Hanna and John H. Rowland 1990, Fourier Series and Integrals of Boundary Value Problems, 2nd Edition, Dover Publication, Inc., New York.
	3. Power, D. L., 2010, Boundary Value Problems and Partial Differential Equations, Elsevier Inc., San Diego, California.
	4. K. M. Humi, and W. B. Miller, 1992, Boundary Value Problems and Partial Differential Equations, PWS-KENT Publishing Company, Boston
	5. Paul DuChateau, and David W. Zachmann, 1986, Partial Differential Equations, McGraw-Hill, New York.
	6. Frederic H Miller , 1960, Partial Differential Equations, John Wiley and Sons, Inc., New York

CO-PLO Mapping

	CO 1	CO 2	CO 3	CO 4	CO 5
PLO 1	V	V	V	V	V
PLO 2	V	V	V	V	V
PLO 3	V	V	V	V	V
PLO 4					
PLO 5	V				V
PLO 6					

Compilation Date :

Modified Date : 14 August, 2022