

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Master Program in Mathematics Telp :+62 274 552243 Email : maths3@ugm.ac.id;

Website : http://math.fmipa.ugm.ac.id/dpmath

MODULE HANDBOOK

Module name:	Pemodelan Harga Opsi dan Finansial
	(Option Pricing and Financial Modeling)
Module level, if applicable:	Master Program
Code, if applicable:	MMM 5516
Semester(s) in which the	1
module is taught:	
Person responsible for the	Chair of Statistics Research Group
module:	Dr. Gunardi, M.Si
Lecturer(s):	Dr. Abdurakhman
Language:	Indonesian
Relation to curriculum:	Master Degree in Mathematics, Elective Course
Credit points:	3 Semester Credit Unit
Type of teaching,	3x50 minutes lectures, 3x60 minutes structured activities.
contact hours:	
Workload:	• 3x50 minutes lectures,
	• 3x60 minutes structured activities,
	• 3x60 minutes individual study,
	• In 16 weeks per semester (including assignments and examinations)
Recommended	-
prerequisites:	
Module objectives/intended	After completing this course, students are expected to be able to:
learning outcomes:	CO1. Able to understand theory of interest
	CO2. Able to understand and analyze option theory.
	CO3. Able to understand and analyze the B-S model option pricing
	theory and Binomial models
	CO4. Applying points a and b in options trading.
Content:	This course is a course that discusses the application of mathematics in
	finance. Topics include interest material, interest rates, simple interest,
	compound interest, continuous interest, accumulated value, present
	value, discount rate. This course also studies the series of payments or
	annuities, basic annuities, advanced annuities, perpetuities,
	amortization, sinking funds. In addition, this course also studies the
	determination of bond prices, yields, reinvestment of interest rates, net
	present value.
	Option valuation theory, various options, volatility and estimation.
	Market mechanization in options trading. Strategies in options trading.
	The option price valuation model uses simulation techniques.
	Black Scholes Merton (BSM) model, BSM formula. Gram Charlier's
	expansion B-S model, Application of the Black Scholes model to the
	options market. Performance analysis of the Black Scholes model. Data
	analysis using R and Matlab software.

Study and examination	The final mark will be	e wei	ghted as follows	s:
requirements and forms of	Jo (components, acti	vities) Weight (per	centage)
evamination.	Homework	VILLE) weight (per	20
examination.	Den en ensiemment			50
	Paper assignment			30
	Discussion			30
	inal grade will be de	term	ined as follows:	
	Brade Criteria			
	The initial cut-off poi	nts fo	or grades A, B, O	C, and D should not be less
	han 80%, 65%, 50%	, and	40%, respective	ely.
	Brade scale:		_	
	A 80≤score	С	$40 \leq \text{score} \leq 50$	
	A/B 70 score 80	D	$20 \leq \text{score} \leq 40$	
	B $60 \leq \text{score} < 70$	E	score<20	
	B/C 50 \leq score $<$ 60			
Media employed:	lides, White Boards	, Pow	er point	
Reading List:	. Kellison, S. G., 1	991.	The Theory of	Interest, John Wiley & Sons.
	New York.			
	. Yuh-Dauh Lyuu,	2004	Financial Eng	ineering and Computation.
	Cambridge Unive	rsitv	Press. United K	ingdom.
	John C Hull On	tions	Futures and (Other Derivatives 6 th Edition
			i utures, and v	Juier Derivatives, 6 Edition,
	Prentice Hall, 200)5.		
	. Wilmott, P, Introc	luces	Quantitative Fi	nance, John Wiley & Sons
	Ltd, The Atrium,	South	ern Gate, Chicl	nester, West Sussex PO19
	8SO, England			

Mapping of The COs and PLOs

	PLO - 1	PLO - 2	PLO - 3	PLO - 4	PLO - 5	PLO -6
	S2 Mat	S2 Mat				
CO 1			x			
CO 2			x			
CO 3					x	
CO 4					x	

Programme Learning Outcomes (PLO) Master Programme in Mathematics

PLO-1	:	Attitudes and Values:
		Have the following attitudes and values: Fear of God Almighty, uphold human values, internalize
		academic values, norms and ethics, be responsible for work in the field of expertise independently.
PLO-2	:	General Knowledge (Core competences):
		Mastering the main concepts of mathematics (Analysis, Advanced Linear Algebra, Mathematical
		Statistics, Modeling and Computing) methodology, and its interrelation.
PLO-3	:	Specific Knowledge:
		Having mastery of comprehensive knowledge in one or several theories for development
		a. analysis field
		b. algebra and combinatorics
		c. fields of applied mathematics and computing
		d. statistics and data science
PLO-4	:	General Skills:
		Able to identify scientific fields that are the object of his research and position them into a research
		map that is developed creatively, innovatively, and tested through a multidisciplinary or
		interdisciplinary approach and communicates it to the academic community.
PLO-5	:	Special Skills:

		Mastering knowledge of current issues, developments in the field of mathematics, especially those		
		related to theory and its applications, through a learning process that is of national and		
		international standards.		
PLO-6	:	Life Long Learning:		
		Understand and be able to live the philosophy of lifelong learning and be adaptive to the		
		development of science and technology, especially fields related to mathematical theory and its		
		application and have an instinct in developing or applying mathematics and developing new		
		challenges.		