

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Graduate Program in Mathematics Telp :+62 274 552243 Email : mathS2@ugm.ac.id;

Email : <u>mathS2@ugm.ac.id;</u> Website : <u>http://S2math.fmipa.ugm.ac.id</u>

MODULE HANDBOOK

Module name:	Advance in Actuarial Mathematics (Matematika Aktuaria Lanjut)			
Module level, if applicable:	Master Program			
Code, if applicable:	MMM-5504			
Semester(s) in which the	First Year			
module is taught:				
Person responsible for the	Chair of The Study Program			
module:				
Lecturer(s):	Dr. Adhitya Ronnie Effendie, M.Sc			
Language:	Bahasa Indonesia			
Relation to curriculum:	Master Degree in Mathematics, Compulsory Actuarial Interest Courses			
Credit points:	3			
Type of teaching,	3x50 minutes lectures, 3x50 minutes structured activities.			
contact hours:				
Workload:	• 3x50 minutes lectures,			
	• 3x50 minutes structured activities,			
	• 3x50 minutes individual study,			
	• In 16 weeks per semester (including mid-term and final examinations).			
	• Total: 144x50 minutes per semester.			
De suinemente e condine to	NONE			
the examination regulations:	NONE			
Recommended propositions:	Perform taking this governe, the students report have a solid understanding in financial			
Recommended prerequisites:	mathematics such as interest theory and annuities.			
Module objectives/intended	On satisfying the requirements of this course, students will have the knowledge			
learning outcomes:	and skills to:			
8	CO-1: Students will comprehend basic theory of benefit reserves and will be able			
	to:			
	• Explain the concepts of benefit reserve and their application in actuarial			
	science			
	• Calculate benefit reserve either in discrete form or in continuous			
	• Define formulation of benefit reserve for various life insurance products			
	CO-2: Students will understand main concepts associated with insurance model			
	including expenses, as well as their applications			
	• Explain the concepts of expenses in life insurance			
	• Calculate gross premium for several insurance contracts			
	 Define the difference between continuous and discrete insurance 			
	contracts			
	CO-3: Students will understand key concepts of multi life and multi decrement			
	model.			
	• Explain the concepts of multi life and multi decrement model			
	Calculate some probabilistic quantities based on multi-life and multi-			
	decrement model			
	• Define the principle of premium calculation such as equivalence or			
	exponential premium			
Content:	The purpose of this course is to develop knowledge of the fundamental actuarial			
	tools for quantitatively assessing risk. The application of these tools to problems			

	encountered in actuarial science is emphasized. A thorough command of the						
	supporting calculus is assumed.						
	Benefit Reserve						
	Insurance model including expenses						
	Multi life model						
	Multi decrement model						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination:	1 Formulation the originality of research problem 25%						
	2 Formulation the theoritical framework 25%						
	3 Formulation the conjecture and metodhology 20%						
	4 Presentation 30%						
	Final grade will be determined as follows:						
	Grade Criteria						
	A : $95 \leq \text{final mark} \leq 100$						
	A- : $90 \leq \text{final mark} \leq 95$						
	$A/B: 85 \leq \text{final mark} \leq 90$						
	B_{+} : 78 < final mark < 85						
	$B \rightarrow 70 \leq \text{final mark} < 78$						
	$D = .70 \ge 111d1 11d1 K \le 70$ $D = .65 \le final mark \le 70$						
	B^{-} . 0.5 \leq final mark \leq 65						
	$D/C : 00 \leq \text{Intal mark} < 00$						
	C^+ . 34 \leq final mark \leq 50						
	$C : 48 \le \text{Intal mark} < 54$						
	$C - : 40 \le \text{final mark} < 48$						
	C/D : 35 \leq final mark $<$ 40						
	$D+$: $30 \le \text{final mark} < 35$						
	D : $25 \le \text{final mark} < 30$						
	E : final mark < 25						
Madia ang la sala							
Media employed:	White/Black Board, LCD Projector, Laptop/Computer						
Reading List:	The related references to the dissertation will be nominated as per the selected						
	topic and content.						
	Ceneral references:						
	1 Bower et al (1999) Actuarial Mathematics Society of Actuaries						
	Schaumburg Illinois						
	2. www.aktuaris.org						
	3. www.soa.org						

Mapping of The COs and PLOs

	PLO – 1 S2 Mat	PLO – 2 S2 Mat	PLO – 3 S2 Mat	PLO – 4 S2 Mat	PLO – 5 S2 Mat	PLO –6 S2 Mat
CO 1			\checkmark		\checkmark	
CO 2			\checkmark		\checkmark	
CO 3						

Programme Learning Outcomes (PLO) Magister Programme in Mathematics

PLO-1	:	Attitude:
		Devote to God Almighty, uphold the humanity values, internalize academic values and ethics, responsible in working in the area of expertise independently.
PLO-2	:	Knowledge:

		Mastering philosophy of mathematics and one of the fields in mathematics (algebra, analysis, applied mathematics, statistics, computational mathematics, computational statistics).
PLO-3	:	Knowledge: Able to think logically, analytically, inductively, deductively, and structured; having the ability to manage, lead, and develop research programs independently, and able to communicate the thoughts as well as his work to the scientific community and the general public.
PLO-4	•	Skill: Creating new concepts and / or new methods (original) in the field of mathematics that are recognized nationally and internationally.
PLO-5	•	Skill: Able to apply mathematics according to their field of expertise to solve problems including those that require a multidisciplinary, cross-disciplinary, or trans-disciplinary approach.
PLO-6	:	<i>Life Long Learning:</i> Having lifelong learning skills and adaptive to the development of science and technology, especially in fields related to Mathematics and its applications.

Compilation Date : 8/9/2022

Modified Date : 9/4/2023