

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Graduate Program in Mathematics Telp :+62 274 552243 Email : maths2@ugm.ac.id;

Website : http://s2math.fmipa.ugm.ac.id

MODULE HANDBOOK

Module Name	Proses Stokastik (Stochastic Processes)
Module level, if applicable	Master Program
Code, if applicable	MMM-5403
Subtitle, if applicable	-
Courses, if applicable	Proses Stokastik (Stochastic Processes)
Semester(s) in which the module is taught	second
Person responsible for the module	Chair of Statistics Laboratory
Lecturer(s)	Drs. Danardono, MPH, Ph.D.
Language	Bahasa Indonesia
Relation to curriculum	Elective for Master Degree in Mathematics
Teaching methods	3 hours lecture
Workload (incl. contact hours, self- study hours)	3 hours lectures, 6 hours individual study, 14 weeks per semester, and a total of 126 hours a semester
Credit points	3
Required and recommended prerequisites for joining the module	Competencies in undergraduate Calculus and mathematical statistics

Module objectives/intended learning outcomes	 On successful completion of this course, students should be able to: CO1 explain the concept of Markov Chain, Poisson Process, Birth and Death Process, Continuous-time Markov Chain, Brownian Motion; Queueing models CO2 determine appropriate models for specific processes and use the concepts, theorems, and computational methods to describe the models; CO3 appraise advanced models/methods to describe certain random process 			
Content	Markov Chain; Classification of states and chains; Limiting distribution of chains; Inference on Markov Chain data and simulations; Poisson Process; Birth and Death Process; Continuous-time Markov Chain; Brownian Motion; Queueing models.			
Examination forms	essay, project report and presentations	essay, project report and presentations		
Study and examination requirements	 The weight of assignments will be as follow 1. Final examination 2. Mid examination 3. Project 4. Quiz, homework, presentation 	vs: 30% 30% 25% 15%		
Media employed	LCD projectors, whiteboards, online platforms, LMS (learning management system) - eLOK			
Reading list	 Ross, S.M., 2010, Introduction to Probability Models, 10th ed., Academic Press Stirzaker, D, 2005, Stochastic Processes and Models, Oxford University Press. 			

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
CO 1			X				
CO 2			X				
CO 3					X		

Compilation Date	:	8/9/2022
Modified Date	:	8/9/2022