

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences
Department of Mathematics
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62274552243 Fax: +62274555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics

Telp : +62 274552243
Email : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
MODULE HANDBOOK sekprodi-s2-matematika.mipa@ugm.ac.id
Website : http://s2math.fmipa.ugm.ac.id/

Module Name	Model Reduction of Bilinear Systems
Module level, if applicable	Master's degree
Code, if applicable	MMM -6313
Subtitle, if applicable	-
Courses, if applicable	Model Reduction of Bilinear Systems
Semester(s) in which the module is taught	2nd (second)
Person responsible for the module	Chair of the Lab. of Applied Mathematics
Lecturer(s)	Dr. Solikhatun, M. Si.
Language	Bahasa Indonesia
Relation to curriculum	Elective course in the first year (2nd semester) Master in Mathematics.
Teaching methods	Lectures, structured activities (assignments, quizzes, team-cases)
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Required and recommended prerequisites for joining the module	Students should be have good knowledge in matrix algebra and differential equations.

Module objectives/intended learning outcomes	After completing this course, the students have ability to: CO 1. apply the principles of the model order reduction on linear and bilinear systems. CO 2. apply several techniques of model order reduction on linear and bilinear systems. CO 3. analyze the least upper bound of the different systems between the original system and reduced order systems. CO 4. chose order of the reduced order systems based on least upper bounds of different bilinear systems and another properties.					
Content	Model order reduction on linear systems. Roots Stability Array, Balanced truncation and singular perturbation methods. Solution and properties of bilinear systems. Model order reduction on bilinear systems. Balanced truncation, singular perturbation and Krylov subspace methods. Advanced topics.					
Examination forms	Written assignments, written exams, quizzes and case based assignments.					
Study and examination requirements	To pass the course, the minimum grade is C. The final mark will be weighted as follows:					
						NoAssessment methods (components, activities)\quadWeight (percentage)\quad Cognitive \quad Case Based
						Final Examination (written exams) 35% 20% 15%
						2.Mid-Term Examination$\quad 35 \% ~ 25 \% ~ 10 \%$
						3.Quiz, Homework (Written and case based assignments) 30% 15% 15%
						Total
Media employed	Projector, board, computer, e-learning via http://elok.ugm.ac.id, simaster, online lecture via Zoom.					
Reading list	[1] Elliot, D., 2009, Bilinear Control Systems: Matrices in Action, Springer. [2] Olsder, G.J., dan Woude, J.W., 2003, Mathematical Systems Theory, Delft University Press. [3] Solikhatun, 2016, Robust $\mathrm{H} \infty$ controller for bilinear systems by linear matrix inequalities, Doctoral Dissertation, Institut Teknologi Bandung. [4] Saragih, R. dan Dewanti, I., 2012, Model Reduction of Bilinear System using Balanced Singular Perturbation, Computer Applications for Security, Control and Systems Engineering, Communication in Computer and Information Science 339. [5] Zhou, K., and Doyle, J.C., 1997, Essential of Robust Control, Prentice Hall, California Institute of Technology. [6] Trentlemen et.al, 2001, Control Theory for Linear Systems, Springer.					

CO and PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		V	V		V	
CO 2		V	V		V	
CO 3		V	V		V	
CO 4		V	V		V	

Compilation Date	$:$	
Modified Date	$:$	9 August 2022

