

Mathematics Department Sekip Utara Bulaksumur Yogyakara 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: matematika.fmipa.ugm.ac.id

Master in Mathematics

Telp: +62 274 552243Email: maths2@ugm.ac.id;Website: http://s2math.fmipa.ugm.ac.id

MODULE HANDBOOK Master in Mathematics

Module name:	Optimization by Vector Space Methods (Optimisasi dengan Metode Ruang				
	Vektor) Mastar Bussieners				
Module level, il applicable:	Iviasier Programme				
Code, if applicable:					
Subtitie, if applicable					
Courses, if applicable					
module is taught:	III (second year)				
Person responsible for the	Chair of the Applied Mathematics Research Group				
module:	Chan of the Apprice Mattematics Research Oroup				
Lecturer(s):	Lina Aryati				
Language:	Bahasa Indonesia				
Relation to curriculum:	Master Degree in Mathematics, Elective, 3 st semester				
Teaching methods					
Workload (incl. contact hours,	• 3x50 minutes lectures,				
self-study hours)	• 3x60 minutes structured activities,				
	• 3x60 minutes individual study,				
	• In 16 weeks per semester (including mid-term and final examinations).				
	• The total workload is 136 hours per semester.				
Credit points	3				
Required and recommended	Before taking this course, it is better if students have understood very well				
prerequisites for joining the	about finite difference methods.				
module:					
Module objectives/intended	After taking this course, students are expected to be able to				
learning outcomes:	• CO 1. solve some real problems related to minimum norm problems in				
	Hilbert Spaces.				
	• CO 2. solve some real problems related to minimum norm problems in				
	Banach Spaces.				
	• CO 3. solve some real problems related to optimization problems of				
	functional.				
Content:	Introduction. Minimum Norm Problem in Hilbert Spaces: Projection Theorem,				
	Primal and Dual Problem, Modified Projection Theorem, Application.				
	Minimum Norm Problem in BanachSpaces: Hann Banach Theorem, Extension				
	of Hann Banach Theorem. Application. Optimization of Functional, Problem				
	with constraints, Lagrange Multiplier, Application.				
Examinations forms	Essay.				
Study and examination	To pass the course, the minimum grade is C. The final mark will be weighted as				
requirements	follows:				
-	No Assessment methods (components, activities) Weight (percentage)				
	1 Final Examination 35%				
	2 Mid-Term Examination 35%				
	3 Class Activities: Quiz, Homework, etc. 30 % (10 % case-based)				
Media employed:	Board, LCD Projector, Laptop/Computer				

Reading List:	Luenberger D. G., 1997, Optimization by Vector Space Methods 1st, John
5	Wiley & Sons, Inc., New York.

CO-PLO Mapping

	PLO – 1 S2 Mat	PLO – 2 S2 Mat	PLO – 3 S2 Mat	PLO – 4 S2 Mat	PLO – 5 S2 Mat	PLO –6 S2 Mat
CO 1			V	V	V	V
CO 2			V	V	V	V
CO 3			V	V	V	V

Compilation Date	:
Modified Date	: 11 August 2022