

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Graduate Program in Mathematics Telp :+62 274 552243 Email : maths2@ugm.ac.id;

 Email
 : maths2@ugm.ac.id;

 Website
 : http://s2math.fmipa.ugm.ac.id

MODULE HANDBOOK Master in Mathematics

Module name:	Optimal Resource Allocation					
Madula laval if applicable	(Optimalisasi Pengalokasian Sumberdaya) Mastar Brasman					
Module level, il applicable:	Iviaster Program					
Semester(s) in which the	I (first year)					
Benera accessible for the						
module:	Dr. Irwan Endravanto A. S. Si. M.Sc.					
Lecturer(s).	Dr. Irwan Endrayanto A., S.Sl., M.Sc					
Language:	Dr. Irwan Endrayanto A., S.Sl., M.Sc Bahasa Indonesia					
Relation to curriculum:	Danasa muonesia Master Degree in Mathematics Elective 1st semester					
Credit points:	2					
Type of teaching	3v50 minutes lectures 3v50 minutes structured activities					
contact hours:	5x50 minutes rectures, 5x50 minutes structured activities.					
Workload:	 3x50 minutes lectures 					
	 3x50 minutes structured activities 					
	 3x50 minutes su uctured activities, 3x50 minutes individual study 					
	• In 16 weeks per semester (including mid-term and final examinations)					
	 Total: 144x50 minutes ner semester 					
Requirements according to	75% attanding the class					
the examination regulations:						
Recommended prerequisites:	Analysis, Optimization, Stochastics Processes					
Module objectives/intended	After completing the course, the student will have :					
learning outcomes:	CO1. ability to develop original mathematics model based on comprehensive					
	literature studies independently.					
	CO2. ability to analyze and solve the model analytically or numerically					
	CO3. ability to interprete the mathematical model and to communicate the					
	results to intended users/audiences, both in oral and written languange.					
Content:	Concept of mathematical modelling in healthcare					
	Knapsack Problems in Healthcare					
	Travelling Salesman Problems in Healthcare: Reonteering Problems					
	Vehicle Routing Problems in Healthcare: Pickup and Delivery Problems					
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities)	Weight (percentage)				
examination:	1 Final Examination	30%				
	2 Mid-Term Examination	30%				
	3 Class Activities: Presentation, etc	15%				
	4 Quiz, Homework, etc	13%				
	5 Peer Assesment	10%				

	Final grade will be determined as follows:Grade CriteriaA $90 \le final mark \le 100$ A - $85 \le final mark < 90$ A/B $80 \le final mark < 85$ B + $75 \le final mark < 80$ B $70 \le final mark < 75$			
	B - $65 \leq \text{final mark} < 70$ C = 50 $\leq \text{final mark} < 64$			
	$\begin{array}{ccc} & 30 & \leq \text{Imat mark} & < 64 \\ & D & 30 & \leq \text{final mark} & < 49 \\ & E & 0 & \leq \text{final mark} & < 30 \\ \end{array}$			
Media employed:	Board, LCD Projector, Laptop/Computer			
Reading List:	 S. Boyd, and L. Vandenberghe, 2004, "Convex Optimization", Cabridge University Press, United Kingdom. C.H. Papadimitriou, and K. Steiglitz, 1998, "Combinatorial Optimization" Dover Publications, United States. S. M. Ross, 1996, "Stochastics Processes", Second Edition, John Wiley and Sons, Inc., United States. 			

Mapping of The COs and PLOs

	PLO – 1 S2 Mat	PLO – 2 S2 Mat	PLO – 3 S2 Mat	PLO – 4 S2 Mat	PLO – 5 S2 Mat	PLO –6 S2 Mat
CO 1			V			
CO 2			V		V	
CO 3					V	