

prerequisites for joining the module

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics

 Telp
 : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

Module Name Mathematical System Theory Module level, if Master's degree applicable MMM 6305 Code, if applicable Subtitle, if applicable _ Mathematical System Theory Courses, if applicable Semester(s) in which 1st (first) the module is taught Chair of the Lab. of Applied Mathematics Person responsible for the module Dr. Ari Suparwanto, M.Si. Lecturer(s) Dr. Solikhatun, M. Si. Bahasa Indonesia Language Relation to curriculum Elective course in the first year (1st semester) Master in Mathematics. Lectures, structured activities (assignments, quizzes, team-cases) **Teaching methods** Total workload is 136 hours per semester, which consists of 150 minutes lectures Workload (incl. contact per week for 14 weeks, 180 minutes structured activities per week, 180 minutes hours, self-study individual study per week, in total is 16 weeks per semester, including mid exam hours) and final exam. 3 Credit points Required and Students should be have good knowledge in Linear Algebra and Introduction to System Theory. recommended

MODULE HANDBOOK

Module	After completing this course, the students have ability to:						
objectives/intended	CO 1. formulate the model from a real problem to time varying state space						
learning outcomes	<i>CO 2. evaluate the solution of linear time varying and the linear time invariant systems</i>						
	CO 3. Analyze the properties of linear time varying systems include of stab controllability and observability CO 4. Synthesize the system in the form of minimal realization.						
Content	Mathematical systems. Linearization of the nonlinear systems. Solution of the linear time varying and linear time invarian systems. Impulse respons. Discretization. System properties: stability, controllability and observability. Minimal realization.						
Examination forms	Written assignments, written exams, quizzes and case based assignments.						
Study and examination requirements	To pass the course, the minimum grade is C. The final mark will be weighted as follows:						
requirements	No	Assessment methods (components, activities)	Weight (percentage)	Cognitive	Case Based		
	1.	Final Examination (written exams)	35 %	20 %	15 %		
	2.	Mid-Term Examination	35 %	25 %	10 %		
	3.	Quiz, Homework (Written and case based assignments)	30 %	15 %	15 %		
		Total	100 %	60 %	40 %		
Media employed	Projector, board, computer, e-learning via <u>http://elok.ugm.ac.id</u> , simaster, online lecture via Zoom.						
Reading list	[1] Chi-Tsong Chen, 1984, "Linear Systems Theory and Design", Holt Rinehart & Winston.						
	[2] Olsder, G.J., 2006, "Mathematical Systems Theory", VSSD, The Netherland. M						

CO and PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		V	V			
CO 2		V	V			
CO 3		V	V			
CO 4		V	V			

Compilation Date	:	
Modified Date	:	9 August 2022