

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences
Department of Mathematics
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62274552243 Fax: +62274555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics

Telp

Email : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
: +62 274552243 sekprodi-s2-matematika.mipa@ugm.ac.id
Website : http://s2math.fmipa.ugm.ac.id/

Module Name	Fractal and Its Applications
Module level, if applicable	Master Program
Code, if applicable	MMM-6323
Subtitle, if applicable	-
Courses, if applicable	Fractal and Its Applications
Semester(s) in which the module is taught	3rd (third)
Person responsible for the module	Chair of the Lab. of Applied Mathematics
Lecturer(s)	Dr. Nanang Susyanto, M.Sc.
Language	Bahasa Indonesia
Relation to curriculum	Compulsory / Elective /Specialisation Names of other study programmes with which the module is shared:
Teaching methods	lecture, lesson, project.
Workload (incl. contact hours, self-study hours)	(Estimated) Total workload: - 136 hours per semester Contact hours (please specify whether lecture, exercise, laboratory session, etc.): - 150 minutes (2.5 hours) lectures per week for 14 weeks, 180 minutes (3 hours) structured activities per week, in total is 16 weeks per semester, including mid exam and final exam. Private study including examination preparation, specified in hours: - 180 minutes (3 hours) individual study per week
Credit points	3

Required and recommended prerequisites for joining the module	- Analysis I (MMM-5101) - Existing competences in metric space.
Module objectives/intended learning outcomes	Upon successful completion, students will have ability to CO 1. Construct and analysis the structure of fractal space CO 2. Apply the iterated function system to the problems related to structure in fractal space CO 3. Analysis the dimension of a fractal set CO 4. Construct and analysis Julia sets CO 5. Apply fractal to other disciplines
Content	a. Introduction: motivation and examples, geometrical approach for transformation, Collage map, definition, and example of fractal b. Haussdorf metric and fractal space: fractal space, metric space, metric on fractal space. c. Iterated function space: contractive map, attractor and its existence, Collage Theorem d. Dimension: example, fractal dimension, similarity dimension, boxcounting e. Julia Set: Dynamical system in R, Dynamical system in C, escape time algorithm f. Applications
Examination forms	Oral presentation, Essay
Study and examination requirements	To pass the course, students are expected to get a minimum grade of D. The final mark will be computed from a proportional weight of assignments, mid examination and final examination. The final mark will be weighted as follows:
Media employed	Boards, projectors, Laptop/Computer
Reading list	1. Barnsley, M.F., 2012, Fractals Everywhere: New Edition, Dover Books on Mathematics. 2. Falconer, K., 2006, Fractal geometry: Mathematical fpoundations and applications, John Wiley \& Sons. 3. Lapidus, M.L. and Frankenhuijsen, M., 2013, Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings, Springer 4. Pesin, Y. and Climenhaga, M., 2009, Lectures on fractal geometry and dynamical systems, Student mathematical library, vol. 52, Americal Mathematical Society.

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1			\checkmark	\checkmark		
CO 2			\checkmark	\checkmark		
CO 3				$\sqrt{ }$	$\sqrt{ }$	
CO 4				\checkmark	$\sqrt{ }$	
CO 5					\checkmark	

Last Modified Date : 8 August 2022

