

Mathematics Department Sekip Utara Bulaksumur Yogyakara 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: matematika.fmipa.ugm.ac.id

Master in Mathematics

Telp: +62 274 552243Email: maths2@ugm.ac.id;Website: http://s2math.fmipa.ugm.ac.id

MODULE HANDBOOK Master in Mathematics

Module name:	Biomothomotics (<i>Bio-Matamatika</i>)				
Module level if annlicable	Master Program				
Code, if annlicable:	MMM 5313				
Subtitle, if annlicable					
Courses, if applicable					
Semester(s) in which the	1st semester				
module is taught:					
Person responsible for the	Chair of the Applied Mathematics Research Group				
module:					
Lecturer(s):	Lina Aryati				
Language:	Bahasa Indonesia				
Relation to curriculum:	Master Degree in Mathematics, Elective, 1st semester				
Teaching methods					
Workload (incl. contact hours,	• 3x50 minutes lectures.				
self-study hours)	• 3x60 minutes structured activities.				
	 3x60 minutes individual study. 				
	 In 16 weeks per semester (including mid-term s 	and final examinations).			
	 The total workload is 136 hours per semester. 				
Credit points	3				
Required and recommended	Before taking this course, it is better if students have good experiences				
prerequisites for joining the	inMathematical Modeling in Differential Equations				
module:	interentier interentier in Dirici cheim Equation				
Module objectives/intended	After completing this course, the students should be able to				
learning outcomes:	• CO 1. create models of more complex epidemic problems.				
-	• CO 2. solve epidemic problems by investigating the stability of				
	equilibrium points.				
	A A				
Content:	Introduction: the simplest SIR model. Review: Stability of Equilibrium Points				
	and Linearization method. Direct Methods: Lyapunov Function, La Salle				
	Theorem. First Integral. Basic Reproduction Number. Global Stability. More				
	general SIR model. The SIS and SEIR model. Global stability of reaction-				
	diffusion and its application to epidemic problems.				
Examinations forms					
Study and examination	To pass the course, the minimum grade is C. The final	l mark will be weighted			
requirements	as follows:				
	No Assessment methods (components, activities)	Weight (percentage)			
	I Final Examination	30%			
	2 IVIId-1 erm Examination	3U%0 150/			
	3 Class Activities: Quiz, Homework	15%			
	4 Project-based	23%0			

Media employed:	Board, LCD Projector, Laptop/Computer				
Reading List:	Brauer F. and Castillo-Chavez C., 2012, Mathematical Model in				
	<i>Population Biology and Epidemiology,</i> Second Edition, Springer Science+Business Media, LLC, New York.				
	2. Perko L., 1991, <i>Differential Equations and Dynamical Systems</i> , Springer-Verlag, New York.				
	3. Vidyasagar, M., 2002, Nonlinear Systems Analysis, SIAM, Philadelphia.				
	4. Luenberger, D. G., 1979, Introduction to Dynamic Systems: Theory, Models & Applications, John Wiley & Sons, New York				
	 Castillo-Chavez C., Feng Z., and Huang W., 2002, On the Computation of R0 and Its Role on Global Stability, <i>Mathematical Approaches for</i> 				
	Emerging and Reemerging Infections Diseases: Models, Methods and Theory, Volume I, Springer-Verlag, New York.				
	 Korobeinikov, A., and Maini, P. K., 2004, A Lyapunov Function and Global Properties for SIR and SEIR Epidemiological Models with Non- Linear Incidence, <i>Mathematical Biosciences and Engineering</i>, Volume I, Number1, June 2004. 				
	7. Hattaf, K. and Yous N., 2013, Global Stability for Reaction-Diffusion Equations in Biology, <i>Computer and Mathematics with Applications</i> , 66, pp.1488-1497.				
	 Wang N., Zhang L., and Teng Z., 2021, Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogeneous space, <i>Journal of Biological Dynamics</i>, DOI 10.1080/17513758.2021.1900428 				
	9. Other journals, adjusted as needed.				

CO-PLO Mapping

	PLO – 1 S2 Mat	PLO – 2 S2 Mat	PLO – 3 S2 Mat	PLO – 4 S2 Mat	PLO – 5 S2 Mat	PLO –6 S2 Mat
CO 1	V			V	V	V
CO 2	V		V	V	V	V

Compilation Date:Modified Date: 2 August 2022