

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 website
 : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Mathematical Modelling and Computation			
Module level, if applicable	Master Program			
Code, if applicable	1MM-5317			
Subtitle, if applicable				
Courses, if applicable	Mathematical Modelling and Computation			
Semester(s) in which the module is taught	II (second year)			
Person responsible for the module	Chair of the Lab. of Applied Mathematics			
Lecturer(s)	Dr. Fajar Adi Kusumo and Dr. Nanang Susyanto			
Language	Bahasa Indonesia			
Relation to curriculum	Compulsory / Elective / Specialisation Names of other study programmes with which the module is shared: -			
Teaching methods	lecture, lesson, project.			
Workload (incl. contact hours, self-study hours)	 (Estimated) Total workload: 136 hours per semester Contact hours (please specify whether lecture, exercise, laboratory session, etc.): 150 minutes (2.5 hours) lectures per week for 14 weeks, 180 minutes (3 hours) structured activities per week, in total is 16 weeks per semester, including mid exam and final exam. Private study including examination preparation, specified in hours: 180 minutes (3 hours) individual study per week 			
Credit points	3			

Required and recommended prerequisites for joining the module	Before taking this course, the students must have a good understanding about the concept of the Differential Equations and some basic concept of Probability Theory and Stochastic Process.					
Module objectives/intended learning outcomes	After completing this course, the students should have: CO 1. Ability to classify the mathematical model due to the problems CO 2. Ability to create a deterministic model to connect a simple real problem with the concepts on Mathematics and give the solutions of the problem in mathematical point of view CO 3. Ability to create a probabilistic model to connect a simple real problem with the concepts on Mathematics and give the solutions of the problem in mathematical point of view CO 4. Ability to interpret the mathematical results of a model to the original problems.					
Content	 a. Motivation of Mathematical Modeling b. Basic concept of Mathematical Modeling c. Some simple mathematical models and their analysis. d. Mathematical modeling based on the system of the differential equations with computations e. Mathematical modelling based on the probability theory with computations. 					
Examination forms	Oral presentation, Essay, Presentation					
Study and examination requirements	To pass the course, students are expected to get a minimum grade of D.The final mark will be weighted as follows:No Assessment methodsWeight (percentage)1. Final Examination30 (15% case based)2. Mid-Term Examination30 (10% case based)3. Project and Presentation25 (25% case based)4. Other Activities: Quiz, Homework, etc.15 (10% case based)					
Media employed Reading list	 Boards, projectors, Laptop/Computer Haberman, R., 2003, Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow, Prentice Hall Inc, Englewood Cliffs, New Jersey. Bishop, 2006, Pattern Recognition and Machine Learning, Springer. Altiok, T., Melamed B., 2007, Simulation Modeling and Analysis with ARENA, Academic Press. Kulkarni, V. G., 2011, Introduction to modeling and analysis of stochastic systems, Springer New York. Shier, D. R., Wallenius, K. T., 1999, Applied Mathematical Modeling A Multidisciplinary Approach, Chapman and Hall/CRC. 					

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V		\checkmark			
CO 2						
CO 3						
CO 4						

Last Modified Date : 1 August 2022