

**UNIVERSITAS GADJAH MADA** Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

## Master in Mathematics

| Telp    | : +62 274 552243                                         |
|---------|----------------------------------------------------------|
| Email   | : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id |
|         | sekprodi-s2-matematika.mipa@ugm.ac.id                    |
| Website | : http://s2math.fmipa.ugm.ac.id/                         |

MODULE HANDBOOK

| 26.1.1                          |                                                                                                                                                                       |  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Module name                     | Theory of Complex Functions                                                                                                                                           |  |  |  |  |
| Module level, if applicable     | Master                                                                                                                                                                |  |  |  |  |
| Code, if applicable             | MMM 5104                                                                                                                                                              |  |  |  |  |
| Subtitle, if applicable         |                                                                                                                                                                       |  |  |  |  |
| Courses, if applicable          | Theory of Complex Functions                                                                                                                                           |  |  |  |  |
| Semester(s) in which the        | 2 <sup>nd</sup> (Second)                                                                                                                                              |  |  |  |  |
| module is taught                |                                                                                                                                                                       |  |  |  |  |
| Person responsible for the      | Chair of Analysis Research Group                                                                                                                                      |  |  |  |  |
| module                          |                                                                                                                                                                       |  |  |  |  |
| Lecture(s)                      | Drs. Yusuf, M.A.                                                                                                                                                      |  |  |  |  |
| Language                        | Bahasa Indonesia                                                                                                                                                      |  |  |  |  |
| Relation to curriculum          | Master Degree, Elective course, 2 <sup>nd</sup> (Second) semester                                                                                                     |  |  |  |  |
| Type of teaching, contact hours | 3 hours lectures, 3 hours structured activities.                                                                                                                      |  |  |  |  |
| Workload                        | 3 hours lectures, 3 hours structured activities, 3 hours individual study, 16 weeks per semester (including mid-term and final examinations), 144 hours per semester. |  |  |  |  |
| Credit points                   | 3                                                                                                                                                                     |  |  |  |  |
| Requirements according to       | Students have taken the course of Analysis I and have participated in the final exam                                                                                  |  |  |  |  |
| the examination regulations     | of the course.                                                                                                                                                        |  |  |  |  |
| Recommended prerequisites       |                                                                                                                                                                       |  |  |  |  |
| Module objectives/intended      | After completing this course the students are expected to be able:                                                                                                    |  |  |  |  |
| learning outcomes               | CO 1. to understand and prove or solve theories related to complex integral.                                                                                          |  |  |  |  |
|                                 | CO 2. to understand and prove or solve theories related to Laurent series,                                                                                            |  |  |  |  |
|                                 | power series, and their properties.                                                                                                                                   |  |  |  |  |
|                                 | CO 3. to understand and prove or solve theories related to poles, residues,                                                                                           |  |  |  |  |
|                                 | and their applications.                                                                                                                                               |  |  |  |  |
|                                 | CO 4. to understand and prove or solve theories related to conformal mapping                                                                                          |  |  |  |  |
|                                 |                                                                                                                                                                       |  |  |  |  |
| Contont                         | and their properties.                                                                                                                                                 |  |  |  |  |
| Content                         | Open Mapping Theorem, complex integral, antiderivative of holomorphic                                                                                                 |  |  |  |  |
|                                 | function, Cauchy's Theorem, Cauchy's Integral Formula, Derivative of                                                                                                  |  |  |  |  |
|                                 | Analytic function, Maximum Modulus Principle, Laurent series, Power                                                                                                   |  |  |  |  |
|                                 | series, isolated singular point, residues and poles, essential singular point,                                                                                        |  |  |  |  |
|                                 | improper Integral, inverse of Laplace transform, Roche's Theorem,                                                                                                     |  |  |  |  |
|                                 | Conformal mapping.                                                                                                                                                    |  |  |  |  |
| Study and examination           | The final mark will be weighted as follows:                                                                                                                           |  |  |  |  |
| requirements and forms of       | No Assessment methods (components, activities) Weight (percentage)                                                                                                    |  |  |  |  |
| examination                     | 1 Final Examination 45%                                                                                                                                               |  |  |  |  |
|                                 | 2 Mid-Term Examination 30%                                                                                                                                            |  |  |  |  |
|                                 | 3 Class Activities: Quiz, Homework, etc. 25%                                                                                                                          |  |  |  |  |
|                                 | Final grade will be determined as follows:                                                                                                                            |  |  |  |  |

|                | Grade Criteria                                                         |  |  |  |  |
|----------------|------------------------------------------------------------------------|--|--|--|--|
|                | A $95 \leq \text{final mark} \leq 100$                                 |  |  |  |  |
|                | A- $90 \leq \text{final mark} < 95$                                    |  |  |  |  |
|                | A/B $85 \le \text{final mark} < 90$                                    |  |  |  |  |
|                | B+ $80 \leq \text{final mark} < 85$                                    |  |  |  |  |
|                | B $75 \leq \text{final mark} < 80$                                     |  |  |  |  |
|                | B- $70 \leq \text{final mark} < 75$                                    |  |  |  |  |
|                | B/C $65 \leq \text{final mark} < 70$                                   |  |  |  |  |
|                | C+ $60 \leq \text{final mark} < 65$                                    |  |  |  |  |
|                | C $55 \leq \text{final mark} < 60$                                     |  |  |  |  |
|                | D $40 \leq \text{final mark} < 55$                                     |  |  |  |  |
|                | E $0 \leq \text{final mark} \leq 40$                                   |  |  |  |  |
| Media employed | Board, LCD Projector, Laptop/Computer                                  |  |  |  |  |
| Reading List   | 1. Serge Lang, 1999, Complex Analysis, Fourth Edition, Springer-Verlag |  |  |  |  |
|                | New York, Inc.                                                         |  |  |  |  |
|                | 2. Brown, J.W. and Churchill, R.V, 2014, Complex Variables And         |  |  |  |  |
|                | Applications, 9th Edition, McGraw-Hill.                                |  |  |  |  |
|                | 3. Howie, J.W, 2003, Complex Analysis, Springer.                       |  |  |  |  |

## PLO and CO Mapping

|      | PLO 1 | PLO 2 | PLO 3 | PLO 4 | PLO 5 | PLO 6 |
|------|-------|-------|-------|-------|-------|-------|
| CO 1 |       | v     | v     | v     | V     |       |
| CO 2 |       | V     | V     | V     | V     |       |
| CO 3 |       | V     | V     | V     | V     |       |
| CO 4 |       | V     | v     | V     | V     |       |

Modified Date: 9 August 2022