

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

Telp : +62 274 5522	43
Email : maths2@ugm	.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
<u>sekprodi-s2-n</u>	atematika.mipa@ugm.ac.id
Website : <u>http://s2math</u>	<u>1.fmipa.ugm.ac.id/</u>

MODULE HANDBOOK

Module Name	Euclidean Space				
Module level, if applicable	Master				
Code, if applicable	MMM 5105				
Subtitle, if applicable					
Courses, if applicable	Euclidean Space				
Semester(s) in which the module is taught	2 nd (second)				
Person responsible for the module	Chair of Analysis Research Group				
Lecturer(s)	Dewi Kartika Sari, M.Sc., Ph.D. and Prof. Dr. Ch. Rini Indrati, M.Si.				
Language	Bahasa Indonesia				
Relation to curriculum	Master Degree, Elective, 2 nd semester				
Teaching methods	Lecture, Discussion, Flipped Classroom, and Presentation.				
Workload (incl. contact hours, self- study hours)	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.				
Credit points	3				
Required and recommended prerequisites for joining the module	Students have learned real analysis or metric spaces				
Module objectives/intended learning outcomes	 After completing this course the students have ability to: CO 1. generalize some concepts in real system in Euclidean space and justify some concepts in Euclidean space which do not hold in metric spaces. CO 2. prove and apply theories of derivative. 				

Content	 Topology on Rⁿ: open set, connected set, compactness and their characteristics. Convergence and continuity in Rⁿ: convergence sequence, Cauchy sequence, some characteristics of continuous function in convergence sequence and open sets. Continuous functions on compact sets and on connected sets. Derivative in Rⁿ: Fréchet and Gâteaux derivatives and its relation, mean value theorems, Applications of derivative in Rⁿ:surjective mapping theorem, inverse mapping theorem, and its application in optimization. 				
Examination forms	Oral presentation and essay				
Study and examination requirements	Requirements for successfully passing the module is minimal C.The final mark will be weighted as follows:NoAssessment methods (components, activities) Weight (percentage)1Final Examination2Mid-Term Examination3Class Activities: Presentation and Quiz4.Homework				
Media employed	White board, LCD, computer, and wifi. Platform: Zoom or google.meet				
Reading list	 Bartle, R.G., 1976, "The Element of Real Analysis", second edition, John Wiley and Sons, New York Duistermaat, J.J. and Kolk, J.A.C., 2004, "Multidimensional Real Analysis I: Differentiation", Cambridge University Press, United Kingdom. 				

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V	V	V	V		
CO 2	V	V	V	V	V	V

Modified Date : 9 August 2022