

## UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

## Master in Mathematics

Telp : +62 274 552243 

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

**MODULE HANDBOOK** 

| Module Name                                                   | Functional Analysis                                                                                                                                                                                                                                                      |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module level, if applicable                                   | Master                                                                                                                                                                                                                                                                   |  |  |
| Code, if applicable                                           | MMM-5103                                                                                                                                                                                                                                                                 |  |  |
| Subtitle, if applicable                                       | -                                                                                                                                                                                                                                                                        |  |  |
| Courses, if applicable                                        | Functional Analysis                                                                                                                                                                                                                                                      |  |  |
| Semester(s) in which the module is taught                     | 2 <sup>nd</sup> (second) semester                                                                                                                                                                                                                                        |  |  |
| Person responsible for the module                             | Chair of the Analysis Lab.                                                                                                                                                                                                                                               |  |  |
| Lecturer(s)                                                   | Prof. Dr. Ch. Rini Indrati, M.Si.; Hadrian Andradi, M.Sc., Ph.D.                                                                                                                                                                                                         |  |  |
| Language                                                      | Bahasa Indonesia                                                                                                                                                                                                                                                         |  |  |
| Relation to curriculum                                        | Compulsory course in the first year (2 <sup>nd</sup> semester) of master's degree for students majoring in mathematical analysis                                                                                                                                         |  |  |
| Teaching methods                                              | Lecture, class discussion, student presentation                                                                                                                                                                                                                          |  |  |
| Workload (incl. contact hours, self-study hours)              | Total workload is 135 hours per semester, which consists of 150<br>minutes lectures per week for 14 weeks, 180 minutes structured<br>activities per week, 180 minutes individual study per week, in total is 16<br>weeks per semester, including mid exam and final exam |  |  |
| Credit points                                                 | 3                                                                                                                                                                                                                                                                        |  |  |
| Required and recommended prerequisites for joining the module | Students have taken Analysis I and have participated in the final exam of<br>the course. Students also have some basic theory in algebra, especially<br>vector space, linear independence set, and orthonormal basis.                                                    |  |  |

| Module objectives/intended<br>learning outcomes | <ul> <li>After completing this course, the students should have the ability to:</li> <li>CO 1 prove some properties of continuous linear mapping and its norm</li> <li>CO 2 prove some characteristic subsets of a Hilbert space based on its inner product and continuous linear mapping</li> <li>CO 3 justify properties of some operators, especially projection, self-adjoint, and normal operators</li> <li>CO 4 justify and make use of some characteristics of completely continuous operator and proper value</li> </ul>                                                                                                             |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Content                                         | <ol> <li>Banach space: definition of Banach space, continuous linear<br/>mapping and its norm, dual space.</li> <li>Hilbert space: definition of Hilbert space, orthonormal basis,<br/>separable space, Riesz representation theorem</li> <li>Operators in Hilbert space: bilinear and sesquilinear mappings,<br/>adjoint of an operator, some types of operators (adjoint operator,<br/>projection operator, isometric operator, unitary operator, normal<br/>operator), invariant and reducing space.</li> <li>Spectral Theorem: proper value, approximate proper value, cc-<br/>operator, spectral theorem of normal operator.</li> </ol> |  |  |  |  |
| Examination forms                               | Oral presentation, essay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Study and examination requirements              | The final mark will be weighted as follows:Assessment methodsWeightNo(components, activites)(percentage)1Final Examination30-40%2Mid-Term Examination30-40%3Class Activities: Quiz, Homework, etc.20-30%Minimum final mark to pass is C                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Media employed                                  | Board, LCD Projector, Laptop/Computer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Reading list                                    | <ol> <li>Berberian, S.K., 1999, Introduction to Hilbert space Vol. 287.<br/>American Mathematical</li> <li>Kreyszig, E., 1991. Introductory functional analysis with applications<br/>(Vol. 17). John Wiley &amp; Sons.</li> <li>Bachman, G. and Narici, L., 1998, Functional Analysis 2<sup>nd</sup> Edition,<br/>Dover Publications.</li> <li>Conway, J.B., 2019, A Course in Functional Analysis 3<sup>rd</sup> Edition,<br/>Springer Verlag, New York.</li> <li>Taylor, A.E., 1980, Introduction to Functional Analysis, John Wiley<br/>and Sons, New York.</li> </ol>                                                                   |  |  |  |  |

**CO-PLO** Mapping

|      | PLO 1 | PLO 2 | PLO 3 | PLO4 | PLO5 | PLO6 |
|------|-------|-------|-------|------|------|------|
| CO 1 | v     | v     | v     |      |      |      |
| CO 2 | v     | v     | v     | v    | v    |      |
| CO 3 | v     | v     | v     | v    | v    | v    |
| CO 4 | v     | v     | v     |      | V    | v    |

Compilation Date:July 2018Modified Date:8 August 2022