

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Magister Programme in	Mathematics
-----------------------	-------------

Telp	: +62 274 552243
Email	: maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
	sekprodi-s2-matematika.mipa@ugm.ac.id
Website	: http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Topics in Algebra C
Module level, if applicable	Magister
Code, if applicable	MMM-6213
Subtitle, if applicable	Max Plus Algebra
Courses, if applicable	Kapita Selekta Aljabar C (Aljabar Max Plus)
Semester(s) in which the	!st (first) or 3 rd (third)
module is taught	
Person responsible for the	Head of Algebra Research Group
module	
Lecturer	Dr. Ari Suparwanto, Dr. Diah Yunia Eksi Palupi
Language	Bahasa Indonesia
Relation to curriculum	Elective Course
Type of teaching, contact	150 minutes lectures per week, 180 minutes supervised activities per week, 180
hours	minutes individual learning per week.
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual
	study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Requirements according to	Students have taken Introduction to Cryptography course (MMM-4206) and have an
the examination regulations	examination card where the course is stated on.
Recommended prerequisites	Students have taken Introduction to Linear Algebra course (MMM-2202) and have
	participated in the final examination of the course.
Module objectives/intended	Upon successful completion,
learning outcomes	CO 1. Students are able to comprehend the cryptosystem and to construct the
_	ciphermodel of a problem.
	CO 2. Students are able to comprehend the cryptanalysis and to apply for some populer
	ciphers.
	CO 3. Students are able to comprehend the Multicryptosystem and to build the
	cryptosystem of some famous systems.
	CO 4. Students are able to apply max plus algebra comprehend some kind public-key
	systems and to implement to solve some daily problems.
Content	Finite field, polynomial ring; computational complexity; cryptosystem, Hash function,
	public key cryptosystem RSA,SHA, AES, El Gamal, Elliptic curve, Signatures scheme
	of RSA and El Gamal, randomness RNG, PRNG; Introduction to distributed
	ledger/block chain, post quantum cryptography, privacy preserving (zero knowledge);
	max plus algebra, max plus algebra cryptography.
Study and examination	The final mark will be computed from a proportional weight of assignments, mid
requirements and forms of	examination and final examination. The final mark will be weighted as follows:
examination	No Assessment methods (components, activities) Weight (percentage)
	1Final Examination20 - 30%2Mid Term Examination20 - 30%
	2 Mid-Term Examination 20 - 30%
	3 Class Activities: Quiz, Homework, etc. 50 - 55%
	Minimum final mark to pass $(0, C)$
Madia ana alam 1	Minimum final mark to pass : 60 (C).
Media employed	Boards, projectors, computer.

Reading List	1	E Douglas R. Stinson, 2002, Cryptography Theory and Practice, 2ndEd, A CRC
Reading List	1.	0 01010 0
		Press Company, Boca Raton, London, New York, Washington DC.
	2.	Johannes A. Buchmann, 2001, Introduction to Cryptografi, Springer-Verlag, New
		York, Berlin, Heidelberg.
	3.	Wayne Patterson, 1987, Mathematical Cryptology for computer scientics and
		Mathematicians, Rowman & Littlefield, United States of America.
	4.	Whitfield Diffie and Martin E. Hellman, 1976, New directions in cryptography,
		IEEE Transactions on Information Theory, vol. It-22 no. 6, 644 – 654.
	5.	R. L. Rivest, A. Shamir, and L. Adleman, 1978, A Method for Obtaining Digital
		Signatures and Public Key Cryptosystems, Communication of the ACM, Vol 21
		No 2, 120-126.
	6.	Lidong Chen and Dustin Moody, 2020, New Mission and Opportunity For
		Mathematics Researchers: Cryptography In The Quantum Era, Advances in
		Mathematics of Communications, Vol 14 No. 1, 161–169.
	7.	Daniel J. Bernstein, Johannes Buchmann and Erik Dahmen, Post-Quantum
		Cryptography, Springer-Verlag, Berlin, 2009.
	8.	Adi Shamir, 1979, How to Share a Secret, Communication of the ACM, Vol 22
		No 11, 612-613.
	9.	Ling San and Chaoping Xing, Coding Theory A First Course, Cambridge
		University Press, 2004

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	V		V			
CO 2			V		٧	V
CO 3	٧		V		V	٧
CO 4	٧		V		V	V

PLO and CO Mapping