

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Semigroups and Semirings		
Module level, if applicable	Master		
Code, if applicable	MMM 5217		
Subtitle, if applicable			
Courses, if applicable			
Semester(s) in which the module is taught	Second year		
Person responsible for the module	Chair of Algebra Research Group		
Lecturer(s)	Dr. Budi Surodjo, MSi.		
Language	Indonesia		
Relation to curriculum	Elective courses		
Teaching methods	Lecture, presentation		
Workload (incl. contact hours, self-study hours)	3 hours lectures, 3 hours supervised activities, 3 hours individual learning per week, 14 weeks per semester, total 9 hours x 14 weeks = 126 hours per semester.		
Credit points	3		
Required and recommended prerequisites for joining the module	Before taking this course, students must master the basics of mathematical logic, set theory, and the basics of group theory and ring theory		

Module objectives/intended learning outcomes	 Upon successful completion of this course, students are able to: CO1: formulate and prove in detail the properties of semigroups. CO2: connect and reconstructs the semigroup concepts in other fields including algebra, analysis and applications CO3: formulate and prove in detail the properties of semiring CO4: connect and reconstructs the concept of semiring in other fields of algebra, analysis, and applications. 			
Content	 Semigroup, monoid, subsemigroup, ideal, natural order. Green equivalence and semigroup homomorphism. Regular elements, idempotent elements, inverse elements, generalized inverses. Quotient semigroups, regular semigroups, and inverse semigroups. Application semigroup. Semiring, subsemiring, ideal. Regular elements, inverse elements, slanted regular. Semiring homomorphisms, the fundamental theorem of homomorphisms, special semirings include independent semirings, quotients, Euclid's, semifields, and dioids. Application 			
Examination forms	Oral presentation, essay, project			
Study and examination requirements	The final mark will be weighted as follows:NoAssessment methods (components, activities)Weight(%)1Final Examination35%2Mid-Term Examination30%3Projects (Presentation)25%4Peer Assessment/Quiz10%			
Media employed	LCD, Laptop, Zoom media			
Reading list	 Clifford, A.H. and Preston, G.B., 1961, <i>The Algebraic Theory of</i> <i>Semigroups</i>, American Math. Society, Rhode Island Golan, J.S., 1999, <i>Semirings and their Applications</i>, Springer- Science+Business Media B.V., Gondran, M., and Minoux, M., 2010, <i>Graph, Dioids, and Semirings</i>. News Models and Algoritms, Springer Howie, J. M., 1996, <i>Fundamentals of Semigroup Theory</i>, Oxford University Press. Okninski, J, 2020, <i>Semigroup Algebras</i>, CRC Press. Pietrich, M., 1984, <i>Inverse semigroups</i> (Pure and applied mathematics) (Canadian Mathematical Society Series of Monographs and Advan), John Wiley & Sons, 			

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		V	V		V	
CO 2					V	
CO 3		V	V		V	
CO 4				V	V	

Compilation Date : August 4, 2017

Modified Date : August 4, 2022