

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

MODULE HANDBOOK

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 Sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

Module Name	Matrices over Rings
Module level, if	Master
applicable	
Code, if applicable	MMM 5207
Subtitle, if applicable	
Courses, if applicable	Matrices over Rings
Semester(s) in which the module is taught	First year
Person responsible for the module	Chair of Algebra Research Group
Lecturer(s)	Prof. Dr. Sri Wahyuni
	Dr. Ari Suparwanto
	Dr. Sutopo
Language	Indonesia
Relation to curriculum	Elective courses
Teaching methods	Lecture, presentation
Workload (incl. contact	
	(Estimated) Total workload:
hours, self-study hours)	(Estimated) Total workload: Contact hours: 150 minutes lectures per week, 180 minutes
-	
-	Contact hours: 150 minutes lectures per week, 180 minutes
-	Contact hours: 150 minutes lectures per week, 180 minutes structured activities per week, 180 hours individual study, 16 weeks
-	Contact hours: 150 minutes lectures per week, 180 minutes structured activities per week, 180 hours individual study, 16 weeks per semester (including mid-term and final examinations), in total
hours, self-study hours)	Contact hours: 150 minutes lectures per week, 180 minutes structured activities per week, 180 hours individual study, 16 weeks per semester (including mid-term and final examinations), in total 136 hours per semester.
hours, self-study hours) Credit points	Contact hours: 150 minutes lectures per week, 180 minutes structured activities per week, 180 hours individual study, 16 weeks per semester (including mid-term and final examinations), in total 136 hours per semester. 3
hours, self-study hours) Credit points Required and	Contact hours: 150 minutes lectures per week, 180 minutes structured activities per week, 180 hours individual study, 16 weeks per semester (including mid-term and final examinations), in total 136 hours per semester. 3 Before taking this course, students must master the elementary linear

Module	Upon successful completion of this course, students are able to:					
objectives/intended	CO1: Conclude					
learning outcomes	and identify in detail an ideal of ring $M_{n\times n}(R)$ and prove their					
	properties.					
	• CO2: conclude and					
	identify in detail the generalization process of the rank of					
	matrices and prove their properties.					
	CO3: conclude,					
	identify, and explain the solution of a system of linear equations					
	over a ring, and prove the properties regarding the necessary and					
	sufficient for a system of linear equations to have a solution (as					
	generalization of linear equations over over field).					
	• CO 4: conclude and					
	identify in detail the generalization process of Cayley-Hamilton					
	Theorem and prove their properties					
	• CO 5: conclude and					
	identify in detail the zero divisor in ring $M_{n\times n}(R)$ and					
	prove the properties regarding the relation between zero divisor					
	in ring R and zero divisor in ring $M_{n\times n}(R)$					
	• CO 6: conclude and					
	identify in detail the eigen values and eigen vector of matrices					
	over rings (as generalization of matrices over field) and prove the properties regarding the relation between eigen values and eigen					
	vector and diagonalization of matrices over rings (as					
	generalization of matrices over field).					
Content	 Matrices with entries from a commutative ring R 					
	(M _{n×n} (R)).					
	 Ideal of ring M_{n×n}(R). 					
	The rank of matrix over a commutative ring					
	Linear system over rings.					
	Primeness of ideal in R and primeness of ideal in					
	$M_{n\times n}(R)$.					
	• The Cayley-Hamilton Theorem of Matrices over Rings.					
	• The Zero Divisor in ring M _{n×n} (R).					
	• the eigen values and eigen vector of matrices over rings					
	Diagonalization of Matrices over Rings.					
Examination forms	Oral presentation, essay, project					
Study and examination	The final mark will be weighted as follows:					
requirements	No Assessment methods (components, activities) Weight					
	(percentage)					
	1 Final Examination 20 – 30 %					
	2 Mid-Term Examination 20 – 30 %					
	3 Project 50 - 55 %					
	To pass the course, the minimum grade is C.					
Media employed	White Board, LCD Projector, Laptop/Computer					

Reading list	
	1. Brown, W. C., 1984, <i>Matrices Over Commutative Rings</i> , Marcel Dekker, Inc.
	2. Laksov, D, 2013, Diagonalization of Matrices Over Rings, Journal of Algebra.
	3. Zabavsky B., 2005, Diagonalizability theorems for matrices over rings with finite stable range, <i>Algebra and Discrete Mathematics</i> .
	4. Ara P., Goodearl K.R, O'meara K.C., and Pardo E., 1997, Diagonaliazation of matrices over regular rings, <i>Linear</i> <i>Algebra and its Applications</i> , Vol.265, pp-147-163.

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1			v	v	v	
CO 2			v	V	v	
CO 3			v	V	v	
CO 4			v	v	v	

Compilation Date	:	August 4, 2017
Modified Date	:	August 4, 2022