

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences
Department of Mathematics
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274552243 Fax: +62 274555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics
Telp : +62 274552243
Email : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
MODULE HANDBOOK
sekprodi-s2-matematika.mipa@ugm.ac.id
Website : http://s2math.fmipa.ugm.ac.id/

Module Name	Matrices over Rings
Module level, if applicable	Master
Code, if applicable	MMM 5207
Subtitle, if applicable	Matrices over Rings
Courses, if applicable	First year
Semester(s) in which the module is taught	- Prof. Dr. Sri Wahyuni - Dr. Ari Suparwanto - Dr. Sutopo
Person responsible for the module	Indonesia
Lecturer(s)	Elective courses
Language	Lecture, presentation Relation to curriculum Teaching methods Workload (incl. contact hours, self-study hours) (Estimated) Total workload: Contact hours: 150 minutes lectures per week, 180 minutes structured activities per week, 180 hours individual study, 16 weeks per semester (including mid-term and final examinations), in total 136 hours per semester. Credit points$\mathbf{3}$ Required and recommended prerequisites for joining the moduleBefore taking this course, students must master the elementary linear algebra and introduction of ring theory.

Module objectives/intended learning outcomes	Upon successful completion of this course, students are able to: - CO1: conclude and identify in detail an ideal of ring $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}(\mathrm{R})$ and prove their properties. - CO2: conclude and identify in detail the generalization process of the rank of matrices and prove their properties. - CO3: identify, and explain the solution of a system of linear equations over a ring, and prove the properties regarding the necessary and sufficient for a system of linear equations to have a solution (as generalization of linear equations over over field). - CO 4: conclude and identify in detail the generalization process of Cayley-Hamilton Theorem and prove their properties - CO 5: conclude and identify in detail the zero divisor in ring $M_{n \times n}(R)$ and prove the properties regarding the relation between zero divisor in ring R and zero divisor in ring $M_{n \times n}(R)$ - CO 6: conclude and identify in detail the eigen values and eigen vector of matrices over rings (as generalization of matrices over field) and prove the properties regarding the relation between eigen values and eigen vector and diagonalization of matrices over rings (as generalization of matrices over field).
Content	- Matrices with entries from a commutative ring R $\left(M_{n \times n}(R)\right)$. - Ideal of ring $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}(\mathrm{R})$. - The rank of matrix over a commutative ring - Linear system over rings. - Primeness of ideal in R and primeness of ideal in $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}(\mathrm{R})$. - The Cayley-Hamilton Theorem of Matrices over Rings. - The Zero Divisor in ring $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}(\mathrm{R})$. - the eigen values and eigen vector of matrices over rings - Diagonalization of Matrices over Rings.
Examination forms	Oral presentation, essay, project
Study and examination requirements	The final mark will be weighted as follows: No Assessment methods (components, activities) Weight (percentage) To pass the course, the minimum grade is \mathbf{C}.
Media employed	White Board, LCD Projector, Laptop/Computer

Reading list	1.Brown, W. C., 1984, Matrices Over Commutative Rings, Marcel Dekker, Inc. 2. Laksov, D, 2013, Diagonalization of Matrices Over Rings, Journal of Algebra.
3. Zabavsky B., 2005, Diagonalizability theorems for matrices over rings with finite stable range, Algebra and Discrete Mathematics.	
4. Ara P., Goodearl K.R, O'meara K.C., and Pardo E., 1997, Diagonaliazation of matrices over regular rings, Linear Algebra and its Applications, Vol.265, pp-147-163.	

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1			V	V	V	
CO 2			V	V	V	
CO 3			V	V	V	
CO 4			V	V	V	

Compilation Date	:	August 4, 2017
Modified Date	:	August 4, 2022

