

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Master in Mathematics

Telp	: +62 274 552243
Email	: maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
	sekprodi-s2-matematika.mipa@ugm.ac.id
Website	: <u>http://s2math.fmipa.ugm.ac.id/</u>

MODULE HANDBOOK

Module name	Linear Systems over Rings					
Module level, if applicable	Master					
Code, if applicable	MMM-6202					
Subtitle, if applicable						
Courses, if applicable	Linear Systems over Rings					
Semester(s) in which the	2					
module is taught						
Person responsible for the	Algebra Research Group					
module						
Lecturer(s)	Dr. rer.nat. Ari Suparwanto, M.Si.					
T	Prof. Dr. rer. nat. Sri Wanyuni, M.S.					
Language	Bahasa Indonesia					
Relation to curriculum	Master Degree, Elective Course					
I eaching methods	Lecture, discussion, presentations, homework etc.					
Workload	I otal workload is 136 hours per semester, which consists of 150 minutes lectures per					
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is to weeks per semester, including find exam and imal exam.					
Credit points	3 Credits					
Requirements according to	Students have an examination card where the course is stated on.					
the examination regulations						
Recommended prerequisites	Students should be proficient in introduction to mathematical system theory over a					
	field and introduction to ring theory,					
Module objectives/intended	After completing this course, students have the ability to:					
learning outcomes	CO1. Explains the concept of linear system over commutative rings , namely the					
	background to the emergence of linear systems over commutative rings and the					
	definition of linear sytems over commutative rings.					
	CO2. Explain the concept of reachability and observability of linear system over					
	commutative rings and characterize reachability and observability of linear system					
	over commutative rings.					
	CO3. Explain the concept of pole assignability and coefficient assignability of the linear					
	system over the commutative ring and solve the problem of pole assignability and					
	coefficient assignability of linear system over commutative rings.					
	CO4. Explain the concept of parametric stabilization and solve the problem of					
	parametric stabilization.					
Content	1.A system with a delay as an over ring system.					
	2. Reachability and observability of linear sytems over commutative rings.					
	3. Pole assignability and coefficient assignability.					
	4. Dynamic stabilization.					
	5. Paramtris stabilization.					

Study and examination	The final mark will be weighted as follows:				
requirements and forms of	No Assessment methods (components, activities)	Weight (percentage)			
examination	1. Final Examination	25-40%			
	2. Mid-Term Examination	25-40%			
	3. Quiz/Presentation, Homework	20-50%			
	To pass the course, the minimum grade is C (50%)				
Media employed	White/Black Board, LCD Projector, Laptop/Computer, Zoom, E-Learning, Simaster				
Reading List	List 1. Brewer, J.W., Bunce, J.W., van Vleck, F.S., 1986, "Linear Systems over Commuta				
	Rings", Marcel Dekker, Inc., New York				
	2. Brown, W.C., 1993, "Matrices over Commutative Rings", Marcel Dekker, Inc., New				
	York.				
	3. Olsder, G.J., 1994, "Mathematical Systems Theory", VSSD, The Netherland.				

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1	V		V	V					
CO 2		V	V		v	V			
CO 3	V		v		v				
CO4		V		V		V			

Compilation Date	:	July 25, 2022
Modified Date	:	

v