

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Master in Mathematics

Telp	: +62 274 552243
Email	: maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
	sekprodi-s2-matematika.mipa@ugm.ac.id
Website	: http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Coding Theory					
Module level, if applicable	Master					
Code, if applicable	MMM 6207					
Subtitle, if applicable						
* *	Coding Theory					
Courses, if applicable Semester(s) in which the	Coding Theory					
	2					
module is taught	Alashar Dasarah Casara					
Person responsible for the	Algebra Research Group					
module						
Lecturer(s)	Dr. Al. Sutjijana, M.Sc.					
	Dr. rer. nat. Indah Emiliana, M.Si.					
T	Dr. Budi Surodjo, M.S.					
Language	Bahasa Indonesia					
Relation to curriculum	Master Degree, Elective Course					
Teaching methods	Lecture, discussion, presentations, homework etc.					
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per					
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3 Credits					
Requirements according to	Students have an examination card where the course is s	tated on.				
the examination regulations						
Recommended prerequisites	Students should be proficient in linear algebra, intro. to r	ring and group theories.				
Module objectives/intended	After completing this course the students should have:					
learning outcomes	CO 1. ability to prove the fundamental properties in coding theory such as					
	encoding, decoding, field, polynomials rings, finite fields.					
	CO 2. ability to find a generator matrix and a parity-check matrix of a linear code.					
	CO 3. ability to encode and decode linear codes (standard array decoding, syndrome					
	decoding) and some special linear codes, such as self- dual codes, and cyclic					
	codes, BCH Codes, Reed Solomon Codes, Goppa Codes.					
	CO 4. abiliy to do further studies and research in coding theory					
Content	a. Introduction, basic theory and some over view of appl					
	Codes, Communication channels, maximum likelihood	0 0				
	distance, nearest neighbor decoding, distance of a code					
	b. Fields, Polynomials rings, structure of finite fields, min					
	c. Linear Codes, Hamming weight, bases for linear code	1 7				
	check matrix, equivalence code, encoding and decoding of linear code, cosets, nearest					
	neighbor decoding, syndrome decoding.d. Cyclic Codes, BCH Codes, Reed Solomon Codes, Goppa Codes.					
	•	ppa Codes.				
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities)	Weight (percentage)				
examination	1. Final Examination	25-40%				
	2. Mid-Term Examination	25-40%				
	3. Quiz/Presentation, Homework	20-30%				
	To pass this course, the minimum grade is C.	7				
Media employed	White/Black Board, LCD Projector, Laptop/Computer,	Zoom, E-Learning, Simaster				

Reading List	 San Ling and Chaoping Xing, 2004, Coding Theory A First Course, Cambridge Universit Press.
	 J[°]urgen Bierbrauer, 2017, Introduction to Coding Theory, CRC PressTaylor & Franci Group Scott A. Vanstone, Paul C van Oorschot, P.C.V., 1989, An Introduction to Error Correctin Codes with Application, Kluwer Academic Publishers

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1	v	v	V						
CO 2		V	V						
CO 3		v	V	v	v				
CO 4	v	v	V	v		v			

Compilation Date : July 25, 2022

Modified Date :