

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 Sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Algebraic Number Theory
Module level, if applicable	Master Programme
Code, if applicable	МММ-6210
Subtitle, if applicable	-
Courses, if applicable	Algebraic Number Theory
Semester(s) in which the module is taught	1st Semester
Person responsible for the module	Chair of the Algebra Laboratory
Lecturer(s)	1. Dr. Budi Surodjo, M.Si. 2. Uha Isnaini, M.Sc., Ph.D.
Language	Bahasa Indonesia
Relation to curriculum	Compulsory for Master of Mathematics
Teaching methods	lecture, project based
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Required and recommended prerequisites for joining the module	Students should be familiar to elementary number theory and algebraic structures.

	1			
Module objectives/intended	On successful completion of this course, students should be able to:			
learning outcomes	CO 1. solve problems related to basic number theory.			
	CO 2. solves problems related to quadratic field arithmetic $\mathbb{Q}[\sqrt{D}]$.			
	CO 3. solve problems related to quadratic forms and elliptic curves.			
	CO 4. apply algebraic number theory to other fields such as cryptography and coding			
Content	The study material for algebraic number theory can be divided into 2 parts:			
	A. Elementary number theory and quadratic field (before mid-exam)			
	Divisibility, Congruences, Division Algorithms, Diophantine Jacobi symbols, quadratic residue, Basic Ring Theory (defin examples, ideals, homomorphisms, factor rings, prime idea operations on ideals, prime ideals and maximal ideals), Qua $(Q[\sqrt{D}])$ arithmetic, ideal factorization, ideal norm, fraction prime ideals, ideal group class, computational ideal group of			
	<i>B. Quadratic form, elliptic curve, and application of algebraic number theory</i>			
	Theory of quadratic form, quadratic form parameters, reduced definite positive form, Elliptic curves (definitions and examples, transformations to the Weierstrass form, elliptic curves over C, R and other fields), Application of algebraic number theory in cryptography and coding theory.			
Examination forms	oral presentation, writing project, written exam (for mid exam and final exam), project presentation			
Study and examination	The final mark will be weighted as follows:			
requirements	No Assessment methods (components, activities)	Weight (percentage)		
	1 Final Examination	25-35%		
	2 Mid-Term Examination	25-35%		
	3. Project	50%		
	Minimum final mark to pass : 50 (grade C)			
Media employed	Board, LMS eLOK UGM, Course Material			
<u> </u>				

Reading list	 [1] Trifković, M., 2013, Algebraic theory of quadratic numbers. Springer. [2] Koch, H., 2012, Algebraic number theory, Springer Science & Business Media.
	[3] Lang, S., 2013, Algebraic number theory, Springer Science & Business Media.
	[4] Cohen, H., Axler, S. and Ribet, K.A., 2007, Number theory: Volume I: Tools and diophantine equations, Springer New York.
	[5] Voight, J., 2021, Quaternion algebras, Springer Nature.

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		v	V	V		
CO 2		V	v	v		
CO 3		v	v		V	
CO 4		v	v		v	V

Compilation Date :

Modified Date : Aug 08, 2022