

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

MODULE HANDBOOK

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 Sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

Module Name	Advanced Ring Theory		
Module level, if	Master		
applicable			
Code, if applicable	MMM 5206		
Subtitle, if applicable			
Courses, if applicable	Advanced Ring Theory		
Semester(s) in which the	First year		
module is taught			
Person responsible for	Chair of Algebra Research Group		
the module			
Lecturer(s)	Prof. Dr. Sri Wahyuni		
	Prof. Dr. Indah Emilia Wijayanti		
	• Dr. Budi Surodjo		
	Dr. Ari Suparwanto		
	• Dr. Sutopo		
	Dr. Uha Isnaeni		
Language	Indonesia		
Relation to curriculum	Elective courses		
Teaching methods	Lecture, presentation		
Workload (incl. contact	(Estimated) Total workload:		
hours, self-study hours)	Contact hours: 150 minutes lectures per week, 180 minutes		
	structured activities per week, 180 hours individual study, 16 weeks		
	per semester (including mid-term and final examinations), in total		
	136 hours per semester.		
Credit points	3		
Required and	Before taking this course, students must master the introduction of		
recommended	ring theory and introduction of module theory.		
prerequisites for joining			
the module			

Module	Upon successful completion of this course, students	are able to:				
objectives/intended	• CO 1. clarify various concepts, definitions and important					
learning outcomes	properties related to regularity in rings, spec	cial ideals, special				
_	rings and special modules.					
	• CO 2. prove concepts related to regularity in	rings, special				
	ideals, special rings and special modules.					
	• CO 3. linking results and theorems in rings ar	nd modules				
	between topics covered in lecture.					
	• CO 4. linking theories, methods and technique	ues that have				
	been learned in lectures to solve some ring a	and module				
	problems.					
Content	The syllabus					
	• the concept of regularity in rings, namely reg	gular elements,				
	regular rings;					
	 idempotent element, nilpotent element, idempotent ideal. 					
	nilpotent ideal, nil ideal;					
	• prime elements, irreducible elements, prime	e ideals, and				
	semiprime ideals;					
	• simple ring, simple module and semi simple	module;				
	• Noether ring, Artin ring, Noether module, Ar	tin module;				
	 various advanced topics related to ring theory 	ry and module				
	theory to enrich students' insight: group ring	s, submodules				
	and prime modules, regular submodules, ide	empotent				
	submodules, single factorization modules, et	t c.				
Examination forms	Oral presentation, essay, project					
Study and examination	The final mark will be weighted as follows:					
requirements	No Assessment methods (components, activities) Weight					
	(percentage)					
	1 Final Examination 20 – 30 %	6				
	2 Mid-Term Examination 20 – 2	30 %				
	3 Project 50 - 55	; %				
	To pass the course, the minimum grade is C.					
Media employed	White Board, LCD Projector, Laptop/Computer					

 Blyth, T.S, 2018, Module Theory An Approach to Linear Algebra, University of St Andrews.
2. Adkins, W.A. Weintraub, S.H., 1992, <i>Algebra: An Approach via Module Theory</i> (Graduate Texts in Mathematics, 136), Springer-Verlag, New York.
3. Lam, T.Y., 1999, <i>Lectures on Modules and Rings</i> , Springer Verlag, New York.
4. Wisbauer, R., 1991, <i>Foundation of Module and Ring Theory</i> , Gordon and Breach, Philadelphia.
5. Lam, T.Y., 1991, A First Course in Noncommutative Rings, Springer Verlag, New York.
6. Huyn, D.V., Lopez-Permouth, S.R., 2010, <i>Advances in Ring Theory</i> , Birkhaeuser, Basel.

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1	v		v	v	V	v
CO 2	v		v	v	V	v
CO 3	v		v	v	V	v
CO 4	v		v	v	V	v

Compilation Date	:	August 4, 2017
Modified Date	:	August 4, 2022