

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics

Telp	: +62 274 552243
Email	: maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id
	<u>sekprodi-s2-matematika.mipa@ugm.ac.id</u>
Website	: http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Matrix Analysis				
Module level, if applicable	Master				
Code, if applicable	MMM-5216				
Subtitle, if applicable					
Courses, if applicable	Matrix Analysis				
Semester(s) in which the	2				
module is taught					
Person responsible for the	Algebra Research Group				
module					
Lecturer(s)	Dr. rer.nat. Ari Suparwanto, M.Si.				
	Dr. Sutopo, M.Si.				
Language	Bahasa Indonesia				
Relation to curriculum	Master Degree, Compulsory Course				
Teaching methods	Lecture, discussion, presentations, homework etc.				
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures				
	per week for 14 weeks, 180 minutes structured activities per week, 180 minutes				
	individual study per week, in total is 16 weeks per semester, including mid exam				
	and final exam.				
Credit points	3 Credits				
Requirements according to	Students have an examination card where the course is stated on.				
the examination					
regulations					
Recommended	Students should be proficient in linear algebra.				
prerequisites					
Module	On successful completion of this course, students should be able to:				
objectives/intended	CO 1 explain various advanced concepts and techniques in matrix theory				
learning outcomes	CO 2 utilize matrices as a tool to solve problems mathematics;				
	CO 3 Apply basic matrix techniques in various fields such as mathematics, statistics, physics, computer science, and engineering, etc.				
Content	a. Partitioned Matrices: Elementary Operations of Partitioned Matrices, The				
Content	Determinant and Inverse of Partitioned Matrices, The Rank of Product and Sum,				
	The Eigenvalues of <i>AB</i>				
	b. Matrix Functions				
	c. Matrix Norms				
	d. Matrix Decompositions: Schur Decomposition, Spectral Decomposition, Singular				
	Value Decomposition, Polar Decomposition, Jordan Canonical Forms.				
	e. Special Types of Matrices: Idempotent matrices, nilpotent matrices, involutary				
	matrices, projection matrices, tridiagonal matrices, circulant matrices,				
	Vandermonde matrices, Hadamard matrices, permutation matrices, doubly				
	stochastic matrices, and nonnegative matrices.				
	storaste nutres, una nonregative natress,				

Study and examination	The final mark will be weighted as follows:				
requirements and forms of	No Assessment methods (components, activities)	Weight			
examination	1. Final Examination	25-40%			
	2. Mid-Term Examination	25-40%			
	3. Quiz/Presentation, Homework	20-30%			
	Minimum final mark to pass : 60 (C).				
Media employed	White/Black Board, LCD Projector, Laptop/Computer, Zoom, E-Learning, Simas				
Reading List	1. Nicholson, W.K., 2019, Linear Algebra with Applications, Base Textbook, Version				
	2019 – Revision A				
	2. Zhang, F, 2011, Matrix Theory, Second Edition, Springer, Linear Park, Davie,				
	Florida, USA				

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		v	V	V	V	
CO 2	V			V	V	v
CO 3		V	V	V	V	V

Compilation Date	•	July 25, 2022
Modified Date	:	