

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

Telp : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id

 Sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Graph Theory and Combinatorics			
Module level, if applicable	Master Programme			
Code, if applicable	MMM 5215			
Subtitle, if applicable	-			
Courses, if applicable	Graph Theory and Combinatorics			
Semester(s) in which the module is taught	4th semester			
Person responsible for the module	Chair of the Algebra Laboratory			
Lecturer(s)	 Dr. Al. Sutjijana, M.Sc. Dr.rer.nat. Yeni Susanti, M.Si. Uha Isnaini, M.Sc., Ph.D. 			
Language	Bahasa Indonesia			
Relation to curriculum	Compulsory in Algebra Interest			
Teaching methods	lecture, project based			
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.			
Credit points	3			
Required and recommended prerequisites for joining the module	Students should have basic knowledge on sets, logics and the main principles in discrete mathematics (counting principle, mathematical induction, pigeonhole principle, and inclusion exclusion principle)			

Module objectives/intended	On successful completion of this course, students should be able to:			
learning outcomes	CO 1. prove some properties of graph			
	CO 2. Prove some properties of finite field, fi square	nite geometry and latin		
	CO 3. solve problems related to graphs and combinatorics			
	CO 4. make a development or a generalization or combine properties related to graph and combinatorics			
Content	The study material for graph theory and combinatorics can be divided into 2 parts:			
	A. Graph Theory			
	Definition and example of graph, degree, adjacency, incidence, handshaking lemma, subgraph, induced subgraphs, graph isomorphism, regular graph, bipartite graph, special graphs, opera of graphs, graph connectivity, tree, planarity, coloring, matching.			
	B. Combinatorics			
	Finite field, finite geometry, projective geometry, Latin square, MOLS, BIBD, algorithm, complexity of algorithm			
Examination forms	oral presentation, writing project, written exam (for mid exam and final exam), project presentation			
Study and examination	The final mark will be weighted as follows:			
requirements	No Assessment methods (components activities)	Weight (percentage)		
	1 Final Examination	25%		
	2 Mid-Term Examination	25%		
	3. Project	50%		
	To pass the course, the minimum grade is C	(50%)		
Media employed	Board, LMS eLOK UGM, Course Material			

Reading list	1.	Dougherty, S.T., 2020, Combinatorics and Finite Geometry, Springer International Publishing
	2.	Robin J. Wilson, 1998, Introduction to Graph Theory, Fourth Edition, Addison Wesley Longman
	3.	Bose, R.C., Manvel, B., 1983, Introduction to Combinatorial Theory, Colorado State University, John Wiley and Sons
	4.	Van Lint, J.H., Wilson, R.M., 1992, A Course in Combinatorics, Cambridge university Press
	5.	Reinhard Diestel, 2005, Graph Theory, Springer Verlag Heidelberg New York
	6.	Rosen, K.H., 2011, Discrete Mathematics and Its Applications, Seventh Edition, Mc-Graw Hill Education

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		v	v		v	
CO 2		v	v		v	
CO 3		v	v		v	
CO 4			v		v	

Compilation Date : July 25, 2022

:

Modified Date