

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Master in Mathematics

Telp : +62 274 552243 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id sekprodi-s2-matematika.mipa@ugm.ac.id Email Website : <u>http://s2math.fmipa.ugm.ac.id/</u>

MODULE HANDBOOK

Module Name	Advanced Linear Algebra
Module level, if applicable	Master Programme
Code, if applicable	MMM-5201
Subtitle, if applicable	-
Courses, if applicable	Advanced Linear Algebra
Semester(s) in which the module is taught	1st Semester
Person responsible for the module	Chair of the Algebra Laboratory
Lecturer(s)	1. Prof. Dr. Sri Wahyuni
	2. Prof. Dr. Indah Emilia Wijayanti
	3. Dr. Ari Suparwanto, M.Si.
	4. Dr. Budi Surodjo, M.Si.
	5. Dr. Yeni Susanti, M.Si.
	5. Dr. Sutopo, M.Si.
	6. Uha Isnaini, M.Sc., Ph.D.
Language	Bahasa Indonesia
Relation to curriculum	Compulsory for Master of Mathematics
Teaching methods	lecture, case based
Workload (incl. contact hours, self-study hours)	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3

Required and recommended prerequisites for joining the module	 Students should be familiar to elementary logic and basic mathematical notions, such as sets, maps, equivalence relations, etc. Students should have knowledge of basic concepts of matrix algebra, such as vectors, matrices, and how to compute with them; 		
Module objectives/intended	On successful completion of this course, students should be able to:		
learning outcomes	CO 1:		
	identify, describe, and apply fundamental concepts of linear algebra,		
	consisting abstract vector space over general field, linear independence, generator, basis, dimension (including the infinite one). Jumlah langsung dan linear transformations/operators, vector space of linear transformations, and dual space of a given vector spoace; and relate the calculations of linear transformations to that of matrices by choosing particular basis for diagonalization of a square matrix under		
	appropriate conditions.		
	CO 2:		
	identify, describe, and apply the notions of inner product space over		
	field of complex number and construct an orthonormal basis for an		
	inner product space. Construct the adjoints of operators. Linear		
	operators on inner product space: adjoints of operators,		
	orthogonal/unitary operators, orthogonal/unitary diagonalization of		
	self-adjoint/normal operators, symmetric bilinear form and quadratic		
	form		
	CO 3:		
	develop specific mathematical skills, competencies and thought		
	processes sufficient to support further study or work in this or related		
	fields (especially skill on abstraction, generalization, and analogy),		
	construct rigorous mathematical proofs and counter examples		

Content	The study material for Advanced Linear Algebra can be divided into 2 groups, namely the Abstract Vector Space and the Inner Product Space.		
	A. Abstract Vector Space over Any Field (before mid exam)		
	 Vector Spaces, Subspace, Existence of Bases (Generator, Linear- independent, Base including Infinite Dimensions), Product (Product), Direct Sum (including infinite index), Linear Transformation (Kernel, Image, Rank, Rank and Nullity Theorem), Vector Space of all linear transformations, Composition linear transformations, and inverse linear transformations, Matrix Representation of Linear Transformations. Base Change (Equivalence Relationship and Similarity Relation of two matrices), Linear Transformation Vector Space Isomorphism and Matrix Vector Space, Eigenvalue and EigenVector Linear Transformation, and Diagonalization, Dual Space, basis dual space, and isomorphism of vector space and dual space of its dual space . B. Inner Product Space over the complex number field C (after mid exam) Inner Product, Inner Product Space (IPS), Norm, Angle and Distance of two Vectors, Orthogonality, Orthonormal Basis, and Their Properties, Matrix of Representation of Linear Transformations in Inner Product Space, Gram-Schmidt Process to get Orthonormal Bases, Projections, and Idempotent Transformations, Dual Space of Inner Product Space, Adjoins of Linear Transformations, Dual Space of Inner Product Space, Adjoins of Linear Transformation for A vector to the subspace, Application to the determination of a function on a set of data: least squares approximation. 		
Examination forms	written task, oral presentation, mid and fi	nal exam	
Study and examination requirements	The final mark will be weighted as followsNoAssessment methods(components, activities)1.Final Examination2.Mid-Term Examination3.Quiz/Presentation4.HomeworkMinimum final mark to pass : 50 (grade C)	: Weight (percentage) 25-40% 25-40% 20-30% 10-20%	
Media employed	Board, LMS eLOK UGM, LCD projector		

Reading list	[1] Roman, S, 2005, Advanced linear algebra, 2nd ed., Grad. Text in Math. 135, Springer-Verlag.
	[2] Weintraub, S.H., 2011. A Guide to Advanced Linear Algebra (No. 44). MAA.
	[3] Lax, P.D., 2007, Linear algebra and its applications, 2nd ed., John Wiley & Sons.
	[4] Curtis, M.L., 2012. Abstract linear algebra. Springer Science & Business Media.
	[5] Cooperstein, B., 2010. Advanced linear algebra. CRC Press.

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		v	V	V		V
CO 2		V	v	v		v
CO 3	v	v	v	v		v

Compilation Date	:	
Modified Date	:	July 24, 2022