

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Mathematics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Master in Mathematics

 Telp
 : +62 274 552243

 Email
 : maths2@ugm.ac.id; kaprodi-s2-matematika.mipa@ugm.ac.id sekprodi-s2-matematika.mipa@ugm.ac.id

 Website
 : http://s2math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module Name	Capita Selecta in Algebra B (Topic in Algebraic Geometry)
Module level, if applicable	Master
Code, if applicable	MMM 6212
Subtitle, if applicable	
Courses, if applicable	
Semester(s) in which the module is taught	Second year
Person responsible for the module	Chair of Algebra Research Group
Lecturer(s)	Dr. Budi Surodjo, MSi.
Language	Indonesia
Relation to curriculum	Elective courses
Teaching methods	Lecture, presentation, project
Workload (incl. contact hours, self-study hours)	3 hours lectures, 3 hours supervised activities, 3 hours individual learning per week, 14 weeks per semester, total 9 hours x 14 weeks = 126 hours per semester.
Credit points	3
Required and recommended prerequisites for joining the module	Before taking this course, students must master the basics of number theory and algebraic structures especially about ring theory

Module objectives/intended learning outcomes	 Upon successful completion of this course, students are able to: CO.1. explain the concept of Hilbert's basis and prove in detail its properties. CO.2. explain the concept of a surface and prove in detail its properties. CO.3. clarify and prove in detail the Groebner properties of the Zariski bases and topology. CO 4. reconstructs the concept of commutative algebra in geometry 			
Content	Commutative algebra, ring of polynomials, Hilbert bases and theorems, Nullstellensatz Hilbert, Affine and projective variability, morphism and rational mapping between varias, conics, plane curves, and quadratic surfaces, Groebner Basis, Zarizki topology, irreducibility and dimensions, applications in elliptic curve geometry, Bezout's theorem, and Riemann-Roch . theorem			
Examination forms	Oral presentation, essay, project			
Study and examination requirements	The final mark will be weighted as follows:NoAssessment methods (components, activities)Weight(%)1Final Examination35%2Mid-Term Examination30%3Projects (Presentation)25%4Peer Assessment/Quiz10%			
Media employed	LCD, Laptop, Zoom media			
Reading list	 Eisenbund., D., 2004, <i>Commutative Algebra with a View Toward Algebraic Geometry</i>, Springer-Science+Business Media Inc., New York Gortz, U, and Wedhorn, T., 2010, <i>Algebraic Geometry I: Scheme with Examples and Exercises</i>, Springer Inc. Lefschetz, S., 2005, <i>Algebraic Geometry</i>, Dover Publications, Inc. Mineola, New York. 			
	Milne., J.S., 2017, <i>Algebraic Geometry</i> ,			
	https://www.jmilne.org/math/CourseNotes/AG510.pdf			

CO-PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6
CO 1		V	V			
CO 2		V	V			
CO 3			V	V	V	
CO 4				V	V	

Compilation Date	:	August 4, 2017
Modified Date	:	August 8, 2022