

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: matematika.fmipa.ugm.ac.id

Doctoral Program in Mathematics Telp : +62 274 552243 Email : maths3@ugm.ac.id;

Website : http://math.fmipa.ugm.ac.id/dpmath

MODULE HANDBOOK **Doctoral in Mathematics**

Madula nama	Durana Chalandila (Chadhardia Durana)					
Module name:	Proses Stokastik (Stochastic Processes)					
Module level, if applicable:	Doctoral Program, Master Program					
Code, if applicable:	MMM-5403					
Semester(s) in which the	2 (even term)					
module is taught:						
Person responsible for the	Chair of Statistics Research Group					
module:						
Lecturer(s):	1. Drs. Danardono, MPH, Ph.D					
	2. Dr. Abdurakhman, M.Si.					
Language:	Indonesia					
Relation to curriculum:	Doctoral Degree in Mathematics, Elective Course					
Credit points:	3 Semester Credit Unit					
`	3x50 minutes lectures, 3x60 minutes structured activities.					
Workload:	• 3x50 minutes lectures,					
	• 3x60 minutes structured activities,					
	3x60 minutes individual study,					
	 5x60 minutes individual study, In 16 weeks per semester (including assignments and examinations) 					
Recommended	Mathematical Statistics					
prerequisites:	iviaurematical Statistics					
Module objectives/intended	On successful completion of this course, students should be able to:					
learning outcomes:	CO1. Explain Markov Chain, theory underlying Markov Chain, Chain classification, limiting distribution of transition matrix and apply the					
	models into real world problems CO2. Explain Poisson Process, the underlying theory and apply the models into real world problems					
	CO3. Explain Brownian Motion, the underlying theory, simulate Brownian Motion and apply the models into real world problems					
	CO4. Explain Queueing theory and apply the models into real world problems CO5. Construct stochastic models from a real world phenomenon					
Content:	Markov Chain, Markov Chain, Chain classification, limiting distribution of transition matrix. Poisson Process. Continuous Markov Chain. Brownian Motion. Queueing Theory.					
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)					
examination:	1 Final Examination 35%					
	2 Mid-Term Examination 35% 30% Projects/Presentation 30%					
	Final grade will be determined as follows: Grade Criteria The initial cut-off points for grades A, B, C, and D should not be less than 80%,					
	65%, 50%, and 40%, respectively.					

Media employed:	Board, LCD Projector, Laptop/Computer
Reading List:	 Ross, S.M., 1996, Stochastic Processes, John Wiley & Sons. Ross, S.M., 2010, Introduction to Probability Models, 10th ed., Academic Press Stirzaker, D, 2005, Stochastic Processes and Models, Oxford University Press.

Mapping of the COs and PLOs

	PLO - 1	PLO - 2	PLO - 3	PLO - 4	PLO - 5	PLO -6
	S3 Mat	S3 Mat				
CO 1	X	X			X	
CO 2	X	X			X	
CO 3	X	X			X	
CO 4	X	X			X	
CO 5	X	Х			X	

Programme Learning Outcomes (PLO) Doctoral Programme in Mathematics

PLO-1	:	Attitude:				
		Devote to God Almighty, uphold the humanity values, internalize academic values and ethics, responsible in working in the area of expertise independently.				
PLO-2	:	Knowledge:				
		Mastering philosophy of mathematics and one of the fields in mathematics (algebra, analysis, applied mathematics, statistics, computational mathematics, computational statistics).				
PLO-3	:	Knowledge:				
		Able to think logically, analytically, inductively, deductively, and structured; having the ability to manage, lead, and develop research programs independently, and able to communicate the thoughts as well as his work to the scientific community and the general public.				
PLO-4	:	Skill:				
		Creating new concepts and / or new methods (original) in the field of mathematics that are recognized nationally and internationally.				
PLO-5	:	Skill:				
		Able to apply mathematics according to their field of expertise to solve problems including those that require a multidisciplinary, cross-disciplinary, or trans-disciplinary approach.				
PLO-6	:	Life Long Learning:				
		Having lifelong learning skills and adaptive to the development of science and technology, especially in fields related to Mathematics and its applications.				